
Рт5-069

МЕС

PC-8001B N-Basic
Reference Manual

S
B

E
R
E

R
B
B
B

_ PC-8001B М-Ваѕіс
Reference Manual

NEC

IMPORTANT NOTICE

(1)

(4)

All rights reserved. This manual is protected by copyright. No part

of this manual may be reproduced in any form whatsoever without the

written permission of the copyright owner.
The policy of NEC being that of continuous product improvement, the

contents of this manual are subject to change, from time to time,

without notice.
АП efforts have been made to ensure that the contents of this manual

are correct; however, should any errors be detected, NEC would

greatly appreciate being informed.
NEC can assume no responsibility for errors in this manual or their

consequences.

© Copyright 1981 by Nippon Electric Co., Ltd.

CONTENTS

Page

CHAPTER 1 GENERAL INFORMATION
MODES OF OPERATION 1-1
LENE FORMAT съдене CE Sas а 1-2
CHARACTER ВЗЕТО ааа E Pu 1-2
CONTROL CHARACTERS ss. 1-2
CONSTANTS oi tite ca een руска ита test 1-3

String Constants: кална faeces v EVI 1-3
Numeric Constants 1-4
Single and Double Precision................ 1-5

VARIABLES AND DECLARATION
CHARACTERS sese и AVE ee eid 1-5
ТУРЕ CONVERSION 1-6
EXPRESSIONS AND OPERATORS 1-7

Arithmetic Operators 1-8
Relational Operators 1-9
Logical Operators 1-10

STRING ОРЕВАТТОК 5..................... 1-12
SCREEN EDITOR ; ако а net виа Rr 1-12
CURSOR MOVEMENT 1-13
INSERTION AND DELETION 1-13
ERRORMESSAGES.«.. zip EIER TE te sd 1-13

CHAPTER 2 STATEMENTS 2-1
AUTOR «oria bes oss н ан ad 2-1
ВЕЕР а и ев OE 2-1
ОТА ВЕ S Susa Erg ТА See, ah aed E 2-2
СВОДА € s он ааа 2-2
CLOSE C se dtes eura tote tO et eO Pos 2-3
COLOR RETE 2-4
CONSOLE Sri 16 ааа 4 EC HV PROPTCR S 2-5
CONT os sous OD bu s pire «Ee BG енен vt 2-6
CSA ИВ. а а cavi eie WEAR CERO 2-6

iii

CONTENTS (continued)

Page

CHAPTER 2 STATEMENTS (Continued)
DATA «coro оо Пар Ox ROR AIR f 2-7
DEB а е ee Ge nae SEB Re din 2-7
DEFEN hoe а А 2-8
DE PUSH veto do en db Da бик ни ee bee 2-9
DELETE строежа A а AES Kat en 2-10
DIM «tun eye p PECES PRO oU E RUE 2-10
END «au bi ci d bte ec oA er Arii tud Pics E 2-12
ERASE 0rd us pests aso adeo PL NR 2-13
ERROR Are als ап на пије Cade pcs 2-13
ВЕЕР ОС. бара aces Ае eta eat be Rot 2-14
PIGES* ch gue ohio eet RA See ees бе S BS 2-15
FOR- NEXT а) Todd Оа А 2-16
FORMAL «ev Lb Re рака re IUE SR E EY 2-17
СРИВ oris ера КА RO ICI 2-17
GET s vies ome a ER Red ES erae 2-18
GETQUEA аа добие eve ор deed 2-19
GOSUB/RETURN с аса окна ид es 2-19
GOTO а о а ле А па лаје dee Do ta ценни чедо ap оса 2-20
о БИ Ми ара ond aut hE IN Gat ewe ва 2-20
INPUT а seria See SD Арис ea 2-22
ТМРО ра socer oe aft CR 2-23
KEY oue ноо е dais eot dal 2-24
KEY LIST v eer mote aed с S Reds 2-25
И РУИС ye o LU DRM E DUAE ie qu 2-25
DET eo es sh AR ae Trib we иаа 2-25
ПЕЊЕ рана caste bk hot edo aie hana 2-26
LINE vy Gruen, каган os феи RETI e ee det es 2-26
LINER INPUT: съл is vet eee e ee a 2-31
LINE INPUT са ба ва pest e eae ora EPA 2-31
DIST) n ib Datos foe latin ak ped RO eS duit 2-32
LEIST Алън yh aet а BIW D AL наа 2-33
EOADE а бе нара н oo па nies 2-34
ELOCATE es ерла жал ли ВИЛЕ a eso 2-34
SET, RSET ce esi RERO Ee ТЫЙ 2-35

CONTENTS (continued)

Page

MERGES 2 nasse они eras EXP ap freie ARCA 2-36
MOTOR usn et или звале а est ema 2-37
MOUNT* 7. ead denos hc Vu vete elis a 2-38
NAMET ura Irc oo а Ne eh hr Sach rab eee re edet 2-38
NEWS oput e Faure ront e ANE RETO EDS 2-38
ON ERROR GOTO +, o газа er ee uen na 2-39
ON GOSUB/ON GOTO 2-40
OPEN TP 2-40
OUT cecidi any do pet acoge dura ata UR d er rey 2-42
PEEK AND POKE ае аео АМА 2-42
POUN Ts oy њен ил qw ee Re PRU Se he ee 2-43
PRINT врани ло Fost) рам a. Perera ee M E 2-43
PRINTS Solos и pare iade ep Ed bu 2-45
PRINT USING 2 радиа (hate DAs Flea 2-47
STRING DATA ааа wees by ae Ee athl 2-47
NUMERIC DATA ако c's eere d 2-48
PSET, PRESET ба ан кон Ep her eb ves raa 2-50
PUT ah dat tea ар ota AC ОТИ ed Oh uade 2-51
PUT @ на td EYES p tarte es 2-51
PUT DA зао вата Pub S e E ERU EQUO dO Ce n d 2-52
READ oriona жара eMe es RUE d HOO) 2-53
ВАМ ух Ie Y dd o WES e Recte 2-54
REMOVE удара бана ром Ла CURE A 2-55
RENUM 24 «a xd No e a tere TA 2-56
RESTORE O02. 582 6 eit God uode PE OE et 2-57
ВЕЗПМЕ а а бара пина је ee eet oad etta а 2-58
RUN e и фирер нити gemi Ева инв Сан 2-59
SAVES оь Sons ate Idea e a dedi a 2-59
SET es cuit i pesos ROT S ror RE d Ee НЕ 2-60
STOP n poke ho as Sox ae Pre ulis ПР вон Ape odd 2-61
SWAP ланца ee p edu denos raa se baeo 2-62
TERM 242214085 xv NOR EE ROO YN Og 2-62
TRON, TROER 2 а perra e Еа SE 2-63
WAT љиљана vox aed wea doi e ates Cats 2-63
КУТОТ а и вани ee А ES end Дива 2-64

CONTENTS (continued)

Page

CHAPTER 3 N-BASIC FUNCTIONS 3-1
Ao: ih teed ко ed о PE 3-1
ро и И 3-1
Павла pb и ер eas aver arti o eS. 3-2
А УК о а права us mod Pene 3-2
СИВ Брајан а DROP E рова ERE 3-3
CINE cosmos oes ебли па Па оО bra Res 3-3
CHARS ЈЕНИ оноо ои ее и ow 3-3
COS soi ting ка dow whitey, нара и Е аиа 3-4
ОВИ seca ра cta ара Ета 3-4
CVI; CVS OVD сео как рата ae be eee aioe 3-4
ПАТЕ Бас а пледира Bede dey а RN 3-5
DS лана вољена јавља ва hea ee! Ces leet ate 3-5
DSKIS ocx shh a Gaia Xe. US atone ИС T 3-6
IPIS PME TIER a eels 3-6
BE rots axo Exod acid Ve и es мана 3-6
РА ВИ -A ws citer ort EN Ebo ot EA BUR 3-7
EE O55 bol pas Pa dado i eR NA se Ead 3-8
А mur е о Б зА 3-8
EPOS esa а Гану наа 3-9
ERE S sacs oot eise и Deda dk i eG eran ds Hae 3-9
HEX eka et сага dnos d pina abo ee A Dad d 3-9
ENDS bab аак Moen a uod аи да аа 3-10
ИЧР Век uut usc iratus oum iuis о e E bored 3-10
INST НО S m Le us При РЦ о Part Ce se Н 3-10
TINI SUN Se atc tarot deos tefie reo tad а le o feda o 3-11
p eere cias ath cnt ees Ics тор Рана т 3-11
LEN peer Rr" 3-12
LOC aes ено мари AUR MR о а а T 3-12
Е О S kr tite cene A ath Oe alien east fata EN 3-12
ПО рали, аа eoram att ha re other 3-12
LEOS уа е а rohs eA See ae 3-13
MID: |, elc oes deb ee d de es 3-18

vi

CONTENTS (continued)

Page

MKI$, MKS$, МКРОв........................ 3-14
ОС esas’ dhe adnate lat и 3-15
PEER asics hi E err tose wns wee i eda den ei ик 3-15
POS на оран а uc xp testas пе Ко s ESTA 3-15
ESBLIN-4Ae ve wR ica PRECOR LEX 3-16
RIGHTS ciet ocio e qua eA die t ae 3-16
npe T "cnm 3-16
Сана eds dette aeri hel р DLS Mo Oed DR qe 3-17
BEN ica eben og as да ah EOS dom ua uet due qa а 3-17
РАСЕ rv usce or dace Pa deine EN n nae mae 3-18
cl NT" 3-18
SQ Noruega etr Rp T UL dd 3-18
ВНОС ое банный 3-19
а eae 3-19
ПАВ ое р SOE АЗ OES 3-20
TAN нв нан сдоби о ORE ech EORR 3-20
Кране н а аео ао 3-21
TIMES Sire пики pact Ok eR eR nae fed 3-21
МА heh rap tie ah PLE Gee e eon а 3-22
МАНЕ ои а Gh аи hn ap aor вођи ede e 3-22

CHAPTER 4 SEQUENTIAL FILES 4-1
OPEN STATEMENT cae bobs ou eo ree ee e's 4-1
CREATING SEQUENTIAL FILES 4-]
APPENDING DATA TOAFILE.............. 4-4

СНАРТЕВ 5 RANDOM FILES 5-1
CREATING RANDOM FILES 5-1
ACCESSING RANDOM FILES............... 5-2

CHAPTER 6 DISK BACKUP 6-1
FORMATTING A DISK 6-1
ЮІЅКВАСКОР аа os cng lee hee we 6-1

vii

CONTENTS (continued)

Page

APPENDIX A MACHINE LANGUAGE
SUBROUTINES A-1

Memory Allocation А-1
Calling Ше USR Function А-1

APPENDIX В MEMORY MAP B-1

APPENDIX С ERROR MESSAGES C-1

APPENDIX D CHARACTER CODE CHART D-1

APPENDIX E DERIVED FUNCTIONS E-1

APPENDIX Е STANDARD РС-8001 KEYBOARD F-1

APPENDIX С GRAPHIC SYMBOL LOCATIONS G-1

APPENDIX Н ALTERNATE CHARACTER SET H-1

FIGURES

2-1 Graphic display examples for the
LINE statement 2-30

TABLES

11 Syntax Description Standards.............. 1-1
12 Control Character Functions................ 1-2
1-3 Numeric Constants 1-4
14 Arithmetic Operators 1-8
15 Available Operators 1-9
2-1 COLOR Options «06.0405 ааа виа 2-4
2-2 CONSOLE Options Default Values.......... 2-5
2-3 Line Function Codes for Syntax1............ 2-26
2-4 | Line Function Codes for Syntax2............ 2-28
25 «| PSET, PRESET Option Codes.............. 2-50

viii

СНАРТЕК 1

GENERAL INFORMATION

All the N-Basic program statements described in this manual
are in alphabetical order for easy reference. Each command is
followed by a brief description, its syntax, and examples. All
syntax descriptions follow the standards listed in Table 1-1.

Table 1-1 Syntax Description Standards

STANDARDS

Lowercase lettering indicates a
mandatory user-defined field.

EXAMPLES

SAVE "filename"

Items enclosed in brackets are BEEP [switch]
optional.

А list of items enclosed in braces
implies one of the items must be
used.

FRE [ub

АП other punctuation is entered | CSAVE "PROBI"
as shown.

MODES OF OPERATION

The PC-8000 can be used in three modes: direct, indirect, and
terminal. The direct mode is entered when the system is
turned on. In direct mode, statements and commands are
executed as entered. The results are displayed immediately,
but the instruction is lost. The direct mode is useful for debug-
ging and using the PC-8000 as a calculator for quick computa-
tions that do not require a complete program.

You use the indirect mode to create programs. Program
statements are preceded by line numbers that are stored in
memory and later executed by a RUN command.

Terminal mode, entered by issuing a TERM command, en-
ables the PC-8000 to serve as a terminal for another com-
puter. Typing a Control-B (hold the CNTR key, press the B
key) returns control to direct mode.

1-1

N-Basic consists of commands and statements. Statements
can be used interchangeably in direct and indirect modes.

Commands can only be used in direct mode. This manual

denotes commands with an asterisk after the name.

LINE FORMAT

A program line always begins with a line number and ends
with a carriage return. A program line can contain a
maximum of 255 characters and follows this syntax:

nnnn BASIC statement [:BASIC statement. . .]

More than one statement to a line can be specified by separat-
ing each program statement with a colon.

CHARACTER SET

The PC-8000 character set is composed of alphabetic, Greek,

numeric, and other special characters. For a complete list of
available characters, see the Character Code Chart in Appen-
dix D.

CONTROL CHARACTERS

N-Basic comes complete with a set of special control charac-
ters that perform the special functions listed in Table 1-2.
Execute control characters by holding down the CNTR key
and pressing the letter key.

Table 1-2 Control Character Functions

CONTROL
CHARACTER

Control-B

FUNCTION

Moves the cursor to the head of the

preceding item.

Control-C Terminates input operations and
returns control to direct mode.

Control-E Deletes all characters following
the cursor in the current line.

Control-G Sounds the PC-8000 buzzer.

1-2

Table 1-2 Control Character Functions (cont’d)

CONTROL
CHARACTER FUNCTION

Control-H Moves the cursor one position to
the left and clears that position
(destructive backspace).

Control-J Shifts all characters from the
cursor to the end of the line, to
the head of the next line.

Control-I Tab space every eight columns.

Control-K Moves the cursor to its home posi-
tion, which is the upper left corner
of the screen.

Control-L Clears the screen.

Control-N Moves the cursor to the head of the
next item displayed on the screen.

Control-R Shifts all characters right of the
cursor one space and leaves the
cursor position blank.

In addition to the control characters, N-Basic uses the control
keys STOP and ESC (escape). STOP halts program execution
and returns the system to direct mode. ESC halts program
execution or listing and waits for input. Any character typed
during this wait state continues program execution.

CONSTANTS

The two types of constants used in N-Basic are string and
numeric.

String Constants

A string constant is a sequence of up to 255 alphanumeric
characters enclosed in quotation marks.

“HELLO”
“$25,000.00”
“Number of Employees”

1-3

Numeric Constants

Numeric constants can be positive or negative and can be one

of the types listed in Table 1-3.

Table 1-3 Numeric Constants

TYPE

Integer constants

DESCRIPTION

Whole numbers between — 32768

and + 32767.

Example: A%=5001

Positive or negative real numbers.

Example: A=35.54

Positive or negative numbers rep-
resented in exponential form. A
floating-point constant consists of
a mantissa followed by the letter Е
and the exponent. The exponent
must be in the range of — 38 to + 38.
Double precision floating-point
constants use the letter D. Both
letters D and E must be capital
letters.

Example: Х#=2359Е + 6

Hexadecimal numbers are pre-
fixed by &H. Hex numbers entered
in this format will be output in
decimal.

Example: 10 Х= &H76
20 PRINT X
run
118

Octal numbers are prefixed by &0
or &. Octal numbers are also dis-
played in decimal.

Example: 10 X= «0847
20 PRINT X
run
231

Fixed point

Floating point

Hex

Octal

1-4

Single and Double Precision

Numeric constants can be single or double precision. Single
precision constants consist of any numeric value that has
seven or fewer digits, exponential form, or a trailing exclama-
tion point (!). Six of the seven significant digits are displayed.

Double precision constants have eight or more digits, expo-
nential form using D, or a trailing number sign (#). Double
precision constants have 17 significant digits, 16 of which are
displayed.

Examples

a) Single Precision b) Double Precision
46.8 34569811
—1.09Е— 06 —1.094820-06
3489.0 3489.0#
22.5! 7654321.1234

VARIABLES AND DECLARATION CHARACTERS

N-Basic variable names can be any length; however, only the
first two characters are significant. The first character of a
name must be an alphabetic character; the remaining charac-
ters can be alphanumeric.

A variable name cannot be a reserve word, begin a reserve
word, or contain a reserve word. For example, BFOR is illegal
because it contains the reserve word FOR. Reserve words
include all N-Basic commands, statements, and functions.

Variables can represent numeric or string values. String
variable names are written with a dollar sign ($) as the last
character (A$=“Name”). The dollar sign is a variable type
declaration character; it declares that the variable represents
a string. You use any one of the four declaration characters to
declare the following variable types.

CHARACTER TYPE

$ String variable
% Integer variable

! Single precision variable

Double precision variable

1-5

If you omit a declaration character, Ше variable is assumed to
represent a single precision value.

Examples

PI£ Declares a double precision value.
MINIMUM! Declares a single precision value.
LIMIT% Declares an integer value.
N$ Declares a string value.
ABC Represents a single precision

value.

Variables can also be declared as arrays by subscripting. For
example, A(10) refers to a one-dimensional array of eleven
elements, any elements of which can be referenced by А(О)

through A(10). A(5,5) declares a two-dimensional array that
contains 36 elements in 6 rows and 6 columns. Elements are
referenced by A(0,0) to A(5,5).

TYPE CONVERSION

When necessary, N-Basic converts a numeric constant from
one type to another. If you attempt to convert a string variable
to numeric or numeric to string, a “Type mismatch” error
occurs.

Observe the following rules when converting numeric con-
stants.

a. If you set constants of different types, the constant is
stored as the type declared in the variable name.

Example
10 A%= 23.42
20 PRINT A%
run

23

b. During expression evaluation, all of the operands in an
arithmetic or relational operation are converted, and
their results returned, to the same degree of precision of
the most precise operand.

1-6

Example

10D#=6#/7 10 D=6#/7
20 PRINT D# 20 PRINT D
run run
.8571428571428571 .857143

с. Logical operators convert their operands to integers and
return an integer result. Operands must be in the range
— 32768 to 32767 or an “Overflow” error occurs.

Example
10 PRINT 8.123 OR 24
run
24

d. When a floating-point value is converted to an integer,
the fractional portion is truncated.

Example
10 С%=55.88
20 PRINT C%
run

55

e. If a double precision variable is assigned to a single
precision value, only the first seven digits, rounded
down, of the converted number are valid because only
seven digits of accuracy are supplied for a single preci-
sion value. The absolute value of the difference between
the printed double precision number and the original
single precision value will be less than 6.3E-8.

Example
10 A=2.04
20 В#=А
30 PRINT A;B#
run
2.04 2.039999961853027

EXPRESSIONS AND OPERATORS

An expression is a string or numeric constant that when
combined produce a single value. Operators used in perform-
ing these mathematical or logical operations are divided into
four categories: arithmetic, relation, logical, and functional.

1-7

Arithmetic Operators

Arithmetic operators, in the order of their precedence, are

listed in Table 1-4.

Table 1-4 Arithmetic Operators

OPERATION

Exponentiation

SAMPLE

OPERATOR EXPRESSION

ue Negation —2

ма: Multiplication and floating- 2*4
point division 4/2.5

\ Integer division 4\ 2

MOD Modulus integer division 4 MOD 2

Addition and subtraction

Use parentheses to change the order of operations. Opera-

tions within parentheses are performed first. Inside the par-
entheses, the normal order of operation is maintained.

Examples

a) Algebraic Expression b) Basic Expression
X+2Y X+ жу
x- Y X- Y/X

X

X+Y (X+ YyZ
Z

x?Y (X^2 Y
XYZ X* Y*Z
X (Y) X* (— Y)

Integer Division and Modulus Arithmetic

Integer division is denoted by the \ on your keyboard.

Operands and quotients are rounded to integers.

1-8

Ехатр!е5

10\ 5=2
25.68 \ 6.99= 4

Modulus arithmetic, denoted by the operator MOD, returns
the integer value of the remainder of integer division.

Examples

10 MOD 3=1 10 divided by 3 with a
remainder of 1

25.68 MOD 6.99=1 25 divided by 6 with a
remainder of 1

Relational Operators

Relational operators compare two values and make decisions
regarding program flow. The result of the comparison is true
(1) or false (0). Available operators to N-Basic are listed in
Table 1-5.

Table 1-5 Available Operators

OPERATOR RELATION TESTED EXPRESSION

= Equality

<>or>< Inequality

< Less than
> Greater than

<= or =< Less than or equal to
>= or => Greater than or equal to

Examples

IF SIN (X) < 0GOTO 100
IF I MOD J<>0 THEN K=K+1

1-9

NOTE

If arithmetic and relational operators
are combined in one expression, the
arithmetic is always performed first.
For example, the expression Х+У<
(T-1)/Z is true if the result of Х+У is
less than the result of T-1 divided by
Z.

Logical Operators

N-Basic provides logical operators for performing bit manipu-
lation, Boolean operations, or tests on multiple relations. As
with relational operators, the logical operator returns a true
(1) or false (0) value. Logical operations are performed after
arithmetic and relational operations. Examples showing the
outcome of logical operations follow. The operators are listed
in the order of their preference.

Example
NOT X NOT X

1 0
0 1

АКО X Y X AND Y
1 1 1
1 0 0
0 1 0
0 0 0

ОК X Y X OR Y
1 1 1
1 0 1
0 1 1
0 0 0

XOR X X X XOR Y
1 1 0
1 0 1
0 1 1
0 0 0

1-10

IMP

EQV

DOHHM oomnnn Фонон нкі Фонон м

~ i & < к<

One use of logical operators is to connect two ог more rela-
tional operators to make decisions on the direction of program
flow. For example:

IF D<200 AND Both conditions would have to be
F«4 THEN 80 true to branch to 80.

ТЕ I>10 OR K<0 Unless both relational conditions
THEN 50 are false, program control

branches to line 50.

Logical operators convert their operands to 16 bit, signed,
twos complement integers in the range of – 32768 to + 32767.
The given operation is performed on these integers in a bit-
by-bit fashion; thus, it is possible to use logical operators to
test bytes for a particular bit pattern. In this vane, you can use
the AND operator to mask all but one of the bits of a status
byte at a machine I/O port, or you can use the OR operator to
merge two bytes to create a particular binary value.

Examples

63 AND 16-16

63 equals binary 111111, 16 equals binary 100000, so a bit
by bit AND operation yields 100000.

10 OR 10-10

10 equals binary 1010, so 1010 OR 1010 + 1010.

STRING OPERATIONS

Strings can be compared using the same relational operators

that are used with numbers. String comparisons are made by

taking one character at a time and comparing the ASCII

codes. If the ASCII codes are the same, the string is considered

equal. If the codes differ, the lower code precedes the higher. A

shorter string is considered smaller. Leading and trailing

blanks are significant.

Examples

“AAN” > “AB” “FILENAME” = “FILENAME”

"X&' up "OLI “CL”

"kg" > “KG” “SMYTH” < “SMYTHE”

B$ < “9/12/80” where B$ = “8/12/80”

Strings can also be concatenated using +. For example:

10 A$=“file”: B$=“name”

20 PRINT A$+ В$
30 PRINT “new” +A$+B$
run
filename
new filename

NOTE

Strings used in comparison ex-

pressions must be enclosed in quota-

tion marks.

SCREEN EDITOR

Characters entered from the keyboard are first received by

the screen editor of N-Basic, then displayed at the current

position of the cursor. Input from the keyboard is not inter-

preted by the interpreter until you enter a carriage return.

Then lines that begin with a proper line number are stored in

memory as program lines. Input without line numbers is

interpreted in direct mode and operations are performed im-

mediately. Changes to the text on screen are not made in

memory unless you enter a carriage return.

1-12

CURSOR MOVEMENT

The PC-8000 has six functions for moving the cursor. The two
direction keys located on the small keyboard operate in up-
percase and lowercase and move the cursor in the indicated
directions.

| <

1 ->

In addition to the direction keys, you can use Control-N to
move the cursor forward to the next item and Control-B to

move the cursor back one item.

INSERTION AND DELETION

The INS key moves all text following the cursor one space
forward. The cursor does not move, allowing an insert in the
middle of text. The same movement can be accomplished
using Control-R.

The DEL key deletes text immediately preceding the cursor
and moves all text following the cursor back one space. You
can also use Control-H for this movement.

ERROR MESSAGES

Error messages for the PC-8000 are displayed in one of two
. ways. For the direct mode, the syntax is "XX message”; for

indirect mode, the syntax is “ХХ message in nnn”, where XX
is the error code and nnn is the line number where the error is
detected. For a complete list of N-Basic error codes, see Ap-
pendix С.

1-13

СНАРТЕК 2

STATEMENTS

This chapter describes the statements and commands of
N-Basic.

AUTO*

AUTO automatically generates line numbers after every car-
riage return and switches control from direct mode to indirect
mode. The two values that can be specified determine where
the line numbers will begin and the increment they will
increase by. The default for both values is 10.

To terminate the AUTO statement, enter a Control-C or press
the STOP key. Control then passes to direct mode.

Syntax

AUTO [start line ,increment]

Examples

AUTO Generates line numbers 10, 20,
30,...

AUTO 20, 15 Generates line numbers 20, 35, 50,
65,...

AUTO 50, Generates line numbers 50, 65,
80,...

The comma following 50 sets the
increment default to the last value
specified. In this example, 15.

BEEP

BEEP briefly sounds the PC-8001 buzzer.

Syntax

BEEP [switch]

*Commands should only be used in direct mode, This manual denotes commands with an
asterisk after the name. The asterisk is not meant to be included in the spelling of the command.

2-1

Examples

BEEP Briefly sounds the buzzer.

BEEP 1 Turns buzzer on.

BEEP 2 Turns buzzer off.

Note

You can use PRINT CHR$(7) in place of BEEP to briefly
sound the buzzer.

CLEAR

CLEAR sets all numeric variables to the null characters. Its
optional variables reserve string space and set the highest
memory location available for use by an N-Basic program.

Syntax

CLEAR [string space ,high memory]

Examples

CLEAR Sets all numeric and string vari-
ables to null.

CLEAR 500,49152 Sets all numeric and string vari-
ables to null, reserves 500 bytes of
memory for string space, and sets
high memory to 49152.

CLOAD*

CLOAD loads a program stored on cassette tape into memory.
When CLOAD is executed, the system searches the tape for
the specified program. Load a program name exactly as it is
saved.

The prompt, SKIP program, appears, displaying all the pro-
grams skipped in the search. The prompt, FOUND:program,

2-2

is displayed when Ше program is located. A blinking asterisk
appears, indicating the program is being loaded into memory.

CLOAD? compares a program currently in memory with a
program of the same name on tape. If they are the same, OK
appears. If not, BAD appears. The programs are not altered by
this command.

Syntax

CLOAD “file name"

Examples

CLOAD “TEST1” The program TESTI is searched for
on tape and loaded into memory.

CLOAD? “TESTI” Compares the program TESTI on
tape with the program currently in
memory.

NOTE

If problems are encountered using
the CLOAD command, see Appendix
Е.

CLOSE

CLOSE ends access to (closes) all opened files and writes the
remaining data in the output buffer to disk. You can open and
close a file several times in the course of an N-Basic program.

Syntax

CLOSE [file number,file number]

Examples

CLOSE Closes all opened files.

CLOSE 1,2 Closes file numbers 1 and 2.

CLOSE 2 Closes file number 2.

2-3

COLOR

COLOR assigns a color or a screen attribute to a display. It has
three options.

a. In color mode, you can specify a color.

b. In black-and-white mode, you can specify a screen at-
tribute.

c. In either mode, you can specify a graphic switch.

Code determines the colors or attributes described in Table

2-1.

Table 2-1 COLOR Options

ATTRIBUTES

CODE (COLOR MODE)|(BLACK AND WHITE MODE)

0 Black Normal
1 Blue Secret
2 Red Blink
3 Magenta Secret
4 Green Reverse Field
5 Cyan Reverse Field-Secret
6 Yellow Reverse Field-Blink
7 White Reverse Field-Secret

Optionally, you can specify the null character code, which is
the ASCII character displayed when the screen is cleared by a
PRINT CHR$(12) statement or the HOME CLR key. You
normally specify 0 to clear the screen.

The graphic switch option chooses graphic or character mode.
A 1 turns on the graphic switch so you can use the graphic
capabilities of the PC-8000. A 0 turns on the character mode.

Syntax

COLOR code [,null character code ,graphic switch]

2-4

Examples

COLOR 6,0,1 The color is yellow, the null charac-
ter code is 0, and the graphic switch
is turned on.

COLOR 2 In color mode, the screen is set to
red. In black and white mode, the
screen attribute is blink.

COLOR 4,,0 The color is green and the charac-
ter mode is switched on.

CONSOLE

CONSOLE formats the screen and determines the color mode.

Syntax

CONSOLE scroll line [,scroll length ,key switch ,color
switch]

The default values for these options are listed in Table 2-2.

Table 2-2 CONSOLE Options Default Values

OPTION
Seroll line

Scroll length

DEFAULT
None

From scroll line to bottom of screen

Key switch 1 (function key display on)

Color switch 0 (black and white)

Examples

CONSOLE 2 Scrolls from the bottom of the
screen to line 2, the function key
display is on, the mode is black and
white.

CONSOLE 2,10 Scrolls lines from 11 to 2, the
function key display is on, the mode
is black and white.

2-5

CONSOLE 2,10,0,1 Scrolls lines from 11 to 2, Ше func-
tion key display is off, the mode is
color.

CONT*

CONT resumes execution of a program after you press the
STOP key or execute a STOP or END statement. Execution
resumes at the point the break occurred.

Syntax

CONT

Examples

a) 10 FOR I=1 TO 100 b) 10 FOR I=1 TO 100
20 PRINT I 20 PRINT I
30 STOP 30 NEXT I
40 NEXT I ok
ok run
run 1

1 2
Break in 30 3
ok 4
CONT ^ С STOP key pressed here
2 CONT
BREAK IN 30 5
CONT 6
3 7

CSAVE

CSAVE stores the file currently in memory on cassette tape.
You can use it in direct mode or in a program statement.

Syntax

CSAVE "file name"

2-6

Example

CSAVE "PROB1" Stores the current file “PROB1” on
cassette tape.

DATA

DATA supplies data items to a READ statement. The READ
statements access the DATA statements in order by line
number. Thus, the items contained in the DATA statements
can be considered one continuous list. A DATA statement can
contain as many constants as fit a line and can be placed
anywhere in a program.

Syntax

DATA constant,constant ...

Example

10 REM PROGRAM TO READ LIST
20 REM OF VARIABLES AND PRINT
30 REM THEM OUT.
40 FOR I-1 TO 3
50 READ A,B,C
60 PRINT A;B;C
70 NEXT I
80 DATA 1,2,3
90 DATA 4,5,6
100 DATA 7,8,9
110 ЕХО `

ПЕЕ

DEF declares а variable ог a range of variables as integer (90),
single precision (!), double precision (#), or string variable ($)
type. If a type declaration character is encountered in a pro-
gram statement, it takes precedence. The system default is
single precision.

2-7

бушах

INT

SNG variable, variable DEF А а te

DBL { variable — variable |
STR

Examples

a) 10 DEFDBL D b) 10 DEFDBL D

20 0= 8/5 20 0!= 3/5

30 PRINT D 30 PRINT D!

run run
6000000238418579 .6

с) 10 DEFSTR A-D d) 10 DEFDBL L
20 A=“HI’:B=“HOW” 20 LOW=3/5
30 C=“ARE”:D=“YOU” 30 PRINT LOW
40 PRINT A,B,C,D run
run 6000000238418579

as at By beginning with the |
OK same letter declared in line

10, low is assumed
a double precision
variable.

DEFFN

You use DEFFN to define functions not intrinsic to the PC-
8000. The function name must be preceded by FN, and the
variables in its argument list must be separated by commas.
You can define functions as numeric or string, but their
argument type must match. Execute a DEFFN statement to
define a function before it is called.

Syntax

DEFFN function name (argument list)=function defini-
tion

Examples

a) Numeric Function Definition

10 DEFFNB (X,Y)- X/Y*100
20 1=20:Ј=5

2-8

b wm

с)

d)

30 T=FNB (1J)
40 PRINT T
50 END
run
400

String Function Definition

10 DEFFNB$ (X$,Y$)=X$+ Y$
20 I$=“ABC”:J$=“DEF”
30 T$- FNB$ (I$,J$)
40 PRINT T$
50 END
run
ABCDEF

Type Mismatch Error

10 DEFFNB$ (X,Y)-X$-- Y$
20 I$2"ABC":J$ - "DEF"
30 T$- FNB$ (I$,J$)
40 PRINT T$
50 END
run

Type Mismatch in 30

The type mismatch error is caused because the function
arguments in line 10 (X, Y) are numeric data types and the
function call arguments, line 30, are strings (I$,J$).

Undefined Function Error

10 I$2"ABC":J$- "DEF"
20 T$- FNB$ (I$,J$)
30 PRINT T$
40 DEFFNB$ (X, Y)=X$+ Y$
50 END
run
Undefined User Function in 20

An attempt is made to call the function before it is defined.

DEFUSR

DEFUSR specifies the starting address of an assembly lan-
guage subroutine. The subroutine is marked by a pointer, any

2-9

integer 0 to 9, which is the number of the USR routine whose
address is being specified. Address is the starting address

of the USR routine. See Appendix A, Assembly Language

Subroutines.

Syntax

DEFUSR pointer= address

Example

200 DEFUSRO- 24000
210 Х= 580 (Y 2/2.89)

DELETE*

DELETE erases specified program lines.

Syntax

DELETE line number [—to line number]

Examples

DELETE 40 Deletes line 40.

DELETE 40-70 Deletes lines 40 through 70.

DELETE-40 Deletes all lines up to and includ-
ing 40.

DELETE “ILLEGAL FUNCTION CALL’.
You must specify a line number.
The same error occurs if you
specify a line that does not exist.

Note

You can use a comma (,) in place of the dash (-).

DIM

DIM allocates storage for arrays and matrices. The system

default for all subscripted variables used without the DIM

statement is 10.

2-10

Although you can dimension a string, it may prove to Бе
unnecessary. Strings are dynamically allocated up to 255
characters; in most cases, this amount of storage is enough.
When it is not, use a CLEAR statement to increase the alloca-
tion of string space.

Syntax

DIM variable ({minimum value,] maximum value)

Examples

a) 10 DIM A(5) b) 10 DIM A(5)
20 FOR I=1 TO 5 20 FOR I-1 TO 5
30 А0)=1 30 A(D-I
40 PRINT A; 40 PRINT A
50 NEXT I 50 NEXT I
run run
123 4 5 1

2
3
4
5

с) 10 DIM А(5,5) d) 20 FOR I=1 TO 15
20 FOR 1=1 ТО 5 30 АШ<Т
30 FOR J=1 ТО 5 40 PRINT A(D;
40 PRINT A(1,J); run
60 NEXT J 123466789 10
60 PRINT Subscript out of range in 30
70 NEXT I ok
run

The system default of 10 is
not large enough to handle
the entire loop. As a result,
the error is displayed.

oo oo oo oo О ooo c а ooo aS ao coc

e) 10 DIM A$(15)
20 A$=“GOOD AFTERNOON EVERYONE"
30 PRINT A$
run
GOOD AFTERNOON EVERYONE

2-11

Note

Because the system dynamically allocates string space up to
255 characters, there is no problem initializing a 23-character
string constant (line 20) to a character string that has been
dimensioned to length 15.

END

END terminates program execution, closes all files, and re-
turns control to the direct mode. An END statement can
appear anywhere and often in a program. The END statement
is optional at the end of a program.

Syntax

END

Examples

10 X=X+1
20 PRINT X
30 IF X>3 THEN END ELSE GOTO 10
run

1

2

5
4
ok

When an END statement is placed in Ше middle of a program,
use a CONT statement to resume program execution.

50 PRINT “ABC”
60 END
70 PRINT “DEF”
80 END
90 PRINT “GHI”
run

2-12

DEF
ok
CONT

GHI
ok

ERASE

ERASE eliminates previously dimensioned arrays. After you

erase an array, you can redimension it, or the freed array

space in memory can be used for other purposes.

Syntax

ERASE array variable [,array variable . . .]

Examples

10 DIM A(10)
20 FOR I-1 TO 10
30 PRINT A(D;
40 NEXT I
50 ERASE A
60 DIM A(5)
70 PRINT
80 PRINT
90 FOR I-1 TO 10
100 PRINT АЦО);
110 NEXT I
run
0000000000
00000
Subscript out of range in 90

Note

Because A is erased and redimensioned to 5 (lines 50,60), it

cannot handle the loop in 80.

ERROR

ERROR defines error codes not intrinsic to N-Basic. The

statement can also be used to simulate the occurrence of

existing error codes.

2-13

Error codes must be ап integer greater than 0 and less than
255. N-Basic error codes currently run from 1 to 73. To
maintain compatability if more N-Basic error codes are
added, use the highest possible value when defining an
error code.

If an error statement specifies a code that has not been de-
fined, the message “Unprintable error” is displayed. If the
specified code is greater than 255, the message "Illegal func-
tion call" is displayed.

Syntax

ERROR code

Example

ok
ERROR 14
Out of string space
ok

100 ON ERROR GOTO 130
110 INPUT “WHAT IS YOUR ВЕТ”; В
120 IF В>5000 THEN ERROR 210

130 IF ERR= 210 THEN PRINT “HOUSE LIMIT IS $5000"
140 IF ERL=120 THEN RESUME 110
150 END
run
WHAT IS YOUR BET? 5001
HOUSE LIMIT IS $5000

WHAT IS YOUR BET? 2
ok

Note

ERR and ERL are reserved words used in error routines. See
Chapter 3.

FIELD

FIELD divides a 256-byte record into data fields for a random
disk file. A data field must be identified as a string and cannot
exceed 4 characters in length, string identifier ($) included.

2-14

бушах

FIELD file number,field length AS variable, ...

Example

10 OPEN "DATA" AS 1
20 FIELD 1,30 AS NAM$,20 AS ADD$,20 AS
CTY$,5 AS STA$

Line 20 allocates 30 bytes to the variable NAM$,20 to
ADD$,20 to CTY$,5 to STA$.

Note

Variables used in a FIELD statement must not appear to the
left of a LET statement or be used in a READ or INPUT
statement.

WRONG
30 NAM$= “GOOF”

FILES*

FILES displays the names and lengths of all files residing ona
specified disk. Lengths are in units of clusters, normally 8
sectors. Ifa file is saved by a binary save (system default), it is
so designated by a period between the file name and the file
type. If saved by an OPEN statement or an ASCII save (SAVE
“TEST”,A), it is designated by a space in the same position.
The default is Drive 1.

Syntax

FILES [drive number]

Example

FILES
format. 1 backup. 1

2-15

testl .asc 1 test2 . 2

demo . 4 data dat 1

FOR. . МЕХТ

The FOR. . .NEXT loop performs а series of instructions a
given number of times. FOR opens the loop, increments a
variable counter, and sets its lower and upper limits, includ-
ing increment step (system default 1). NEXT closes the loop
and sends control back to its paired FOR statement. This
process continues until the upper limit of the loop is reached.

Syntax

FOR variable -х TO y [STEP z]

Examples

a) 10 REM SIMPLE b) 10 REM ITERATION

ITERATION USING STEP
20 FOR I=1 TO 5 20 FOR I-5 TO 10 STEP 2

30 PRINT I; 30 PRINT Г
40 NEXT I 40 NEXT I
run run
1 2 B8B 4 B 5 7 9

c) 10 REM ITERATION d) 10 REM NESTED LOOPS
USING — STEP 20 FOR I=1 TO 5

20 FOR I=5 TO 1 STEP 30 FOR J=1 ТО 5
==] 40 PRINT I+ J

30 PRINT I; 50 NEXT J
40 NEXTI 60 PRINT
run 70 NEXT I
База 1 run

> аза S3 5
o @ 5 6 7

46 6 7 8
5 6 7 8 9
6 7 8 9 10

2-16

КОКМАТ“

FORMAT performs Level 1 formatting on a disk. Disks that

are new, formatted on other systems, or improperly formatted

must use this command to operate properly. Level 1 format-

ting prepares a disk for data I/O only. Disk BASIC statements,

functions, or commands will not function unless Level 2 for-

matting is performed. See Chapter 6.

Syntax

FORMAT drive number

Example

FORMAT 2

Note

Use this statement with extreme caution. Reformatting a
disk erases all data previously stored, including the disk
operating system.

GET

GET reads a record from a random disk file.

Syntax

GET # file number [,record number]

Examples

10 REM PROGRAM TO READ A RECORD
20 REM FROM A RANDOM FILE.
30 OPEN "DATA" AS 1
40 FIELD 1,30 AS NAM$,20 AS ADD$,20 AS CTY$,5 AS

STA$
50 FOR I=1 TO 5
60 INPUT “2 DIGIT RECORD NUMBER’ КУ

70 PRINT
80 GET #1,K Y%
90 PRINT “NAME” МАМ$
100 PRINT “ADDRESS”, ADD$

217

110 PRINT “CITY”, CTY$
120 PRINT “STATE”, STA$
130 PRINT
140 NEXT I
150 END
run
2 DIGIT RECORD NUMBER ? 4

NAME CLOWN BOZO THE
ADDRESS 12 BOZO LANE
CITY BOZO CITY
STATE MASS

2 DIGIT RECORD NUMBER ? 2

NAME JUAN DON
ADDRESS 2 LOVERS LANE
CITY LOVE CITY
STATE NIRVANA

2 DIGIT RECORD NUMBER ? 1

Line 80 demonstrates a GET statement using the option rec-
ord number. The data was previously stored in file #1 by
another program. Line 60 asks for a record number, and that
record is read in line 80. If the optional record number is
omitted, the program reads the first five records of the file.

GET@

СЕТ saves characters or dot graphics within a specified
rectangle on the screen to a dimensioned array. You use the
coordinates C and R to define the upper-left corner of the
rectangle, and c and r to define the lower right corner of the
rectangle. Values for C and c range from 0 to the number of
characters per line, minus 1. Values for R and r range from 0 to
the number of lines per screen, minus 1. All characters within
this block will be saved to a previously dimensioned array.

If the G option is specified, both graphics and characters can
be saved. When you use this option, the range for C and cis 0 to
the number of characters per line *2 minus 1, and the range

2-18

for R andr is 0 to Ше number of characters per line 4 minus 1.
The receiving array must be declared as an integer array with
a declared subscript greater than the number of characters to
be saved.

Syntax

GET@ (C,R) S (с,г), агтау [,G]

Example

10 DIM A% (64) ,B% (100)
20 CONSOLE,,0,1

100 GET@ (10,10) — (17,17) ,A%
200 СЕТ@ (5,5) — (14,14) В%

GET@ А

GET@ А saves color, dot graphics, and screen attributes
within a rectangle specified on the screen to an array. Values
of coordinates C and c range from 0 to the number of charac-
ters per line minus 1. Values of R and r range from 0 to the
number of rows per screen minus 1.

Syntax

GET@ А (C,R) - (с.г), array

Example

100 GET@ A (10,10) — (20,20), B%

GOSUB/RETURN

GOSUB causes an unconditional break in program execution
by transferring control to a designated subroutine. Once pro-
gram statements of the subroutine are executed, a RETURN
statement branches control back to the line immediately fol-
lowing the sending GOSUB statement. There can be more
than one RETURN statement referencing the same GOSUB if
logic dictates a return from different points of the subroutine.
GOSUB statements can be nested. Such nesting is limited
only by available memory.

2-19

бушах

GOSUB line number

Example

10 PRINT “BEFORE SUBROUTINE J="3J
20 GOSUB 60
30 PRINT
40 PRINT “AFTER SUBROUTINE J= ”;Ј
50 END
60 J=J+5
70 RETURN
run
BEFORE SUBROUTINE J=0

AFTER SUBROUTINE J=5

GOTO

GOTO unconditionally branches program execution to a

specified line number.

Syntax

GOTO line number

Example

10 READ R
20 PRINT “R= ”;R;
30 A=3.14* 2
40 PRINT "AREA- А
50 GOTO 10
60 DATA 5,7,12
run
R- 5 AREA- 78.5
К- 7 AREA- 153.86
R- 12 AREA- 452.16
Out of data in 10

IF. .. THEN...

IF chooses a particular route for program execution based on

conditions established in a logical expression.

2-20

Syntax

IF logical expression [AND logical expression]

statement

THEN |
statement

line number [ELSE
line number

GOTO line number

Examples

a) Simple IF Statement

b ee

10 PRINT TIME$
20 INPUT “TYPE YES OR NO TO СОМТІЧОЕ”;А$
30 IF A$=“YES” THEN 10
40 PRINT
50 PRINT “GOODBY”
60 END
run
02:19:16
TYPE YES OR NO TO CONTINUE ? NO

GOODBY
OK

The program prints the current time on the system clock
repetitively if the test condition in line 30 is met. Program
execution continues to the next line (40) if the test condi-
tion is not met.

To obtain the same program logic, replace line 30 with the
following combinations available to the IF statement.

30 IF A$=“YES” GOTO 10
30 IF A$=“YES” THEN GOTO 10
30 IF A$=“NO” THEN 50: ELSE GOTO 10

AND Option

Use the AND option if more than one condition is required
to meet a desired result.

10 INPUT “AGE AND INCOME”; AGE,INC
20 IF AGE «65 AND INC > 7000 THEN PER=.05:ELSE
PER=.1
30 DIS=300* PER

2-21

40 PRINT
50 PRINT “YOUR DISCOUNT IS ”
60 PRINT USING “$##.##”;DIS
run
АСЕ AND INCOME ?64,8000

YOUR DISCOUNT IS

$15.00
ok

INPUT

INPUT accepts data from the keyboard during program

execution. When encountered, the system prompts you to

enter data by displaying a question mark.

Data items must be separated by commas and coincide with

the number of variables listed after the INPUT statement. If

too few data items are supplied, the system displays two

question marks “??” and waits for further input. If too many

data items are entered, the message "EXTRA IGNORED" is

displayed and execution continues. Data input must corre-

spond to the data types of the variables.

You also have the option of including a prompt string with the

INPUT statement to aid in proper data input. When using a

prompt string, the system displays the prompt immediately

followed by a question mark.

Syntax

INPUT [“prompt string”;] variable, variable . . .

Examples

а) 10 INPUT “INPUT A МОМВЕК”;Х
20 PRINT X * SQUARED IS"; X^2
run
INPUT A NUMBER? 12.45

12.45 SQUARED IS 155.003

ok

b) 10 INPUT “INPUT BASE AND HEIGHT ”;B,H

20 AREA- (B/2) *H

2-22

30 PRINT “THE AREA OF THE RIGHT TRIANGLE
IS ”; AREA
run
INPUT BASE AND HEIGHT ? 5,5
THE AREA OF THE RIGHT TRIANGLE IS 12.5

ok

INPUT #

INPUT¥ reads a record from a previously created sequential
file and initializes its variable list to the appropriate record
items.

Variables in an INPUT# statement must be identical in data
type to the stored record items. For example, the variable X$
cannot be initialized to a record item stored as an integer.

INPUT# reads an image of data on disk as it was saved by the
PRINT# statement. Improper results may be caused by im-
proper storage.

Syntax

INPUT# file number, variable, variable, ...

Example

10 OPEN “list.dat” FOR INPUT AS #1
20 IF EOF (1) THEN END
30 INPUT #1,N$,S$,D$
40 PRINT N$
50 PRINT S$
60 PRINT 05
70 PRINT
80 GOTO 20
run

JIM BEAM
PUBLIC RELATIONS
10/10/80

HULK
DEMOLITION
12/21/80

2-23

POPEYE
RECREATION
9/5/80

BO DEREK
SALES
10/31/80

Note

The preceding data was previously stored using the PRINT#
statement.

A file number specified as —1 (INPUT FILE #-1...) is read
from cassette.

KEY

KEY initializes the programmable function keys displayed at
the bottom of the screen. Of the ten keys available, five are
displayed in lowercase mode (default) and five are displayed
in uppercase mode. Key numbers 1 through 5 are reserved for
lowercase, 6 through 10 are reserved for uppercase. The
maximum length of a string is 15 characters, although only 12
characters are displayed in 80-character mode and 6 in 40-
character mode.

Function keys are programmable in both standard and con-
trol characters. Control characters that cannot be entered
from the keyboard can be specified using the function CHR$
(n) and appended to the string using a plus (+) sign. CHR$ (n)
returns the ASCII character whose code is decimal n. See
Appendix D.

Syntax

KEY key number,"string"

Examples

KEY 1,Чоад” The load command appears in the
first function key display box at
the bottom of the screen.

2-24 |

KEY 10,115” Function KEY 10 (uppercase) is

+CHR$ (13) programmed to list (list carriage
return).

KEY LIST

KEY LIST displays a complete list of strings assigned to the

function keys.

Syntax

KEY LIST

Examples

KEY LIST

Hr time$
auto key
go to print
list list
run cont

ok

KILL

KILL deletes a specified file from any mounted disk.

Syntax

KILL "[drive:] filename"

Examples

KILL “DATA.1” The file “DATA.1” is deleted from

the disk mounted on Drive 1

(default).

KILL “2:DATA.1” "DATA.1" is deleted from the disk

mounted on Drive 2.

LET

LET assigns a value or the value of an expression to a variable.

Its use is optional.

2-25

бушах

[LET] variable=value

Example

The following examples are equivalent.

10 LET D$=“HELLO” 10 D$=“HELLO”
20 LET A=100 20 A=100
30 LET B= 8^2 30 В= 872
40 LET TOTAL- А+ B 40 TOTAL- А+ В

LFILES*

LFILES lists all files of a disk mounted on a specified drive to
a printer. Default is Drive 1.

Syntax

LFILES [drive number]

Example

LFILES 2 АП files on Drive 2 are listed to the
printer.

LINE

In its simplest form, LINE draws a line, displayed on the
screen, between two user-defined points. Three syntaxes are
available.

Syntax 1

LINE screen line,function code

You use this syntax to specify various attributes to a line
displayed on the screen. The function codes that assign these
attributes are listed in Table 2-3.

Table 2-3 Line Function Codes for Syntax 1

FUNCTION

Normal
Blinking

2-26

2 Reverse field
3 Reverse field with blinking

Specified line numbers must range between 0 and the number
of lines per screen minus 1. Because a LINE statement using
Syntax 1 will not function in black and white mode, first
execute a CONSOLE statement to put the monitor in color
mode.

Example 1

50 CONSOLE 0,19,0,1
60 PRINT CHR$ (12)
70 LINE 3,2
80 LOCATE 0,3: INPUT “WHAT IS YOUR BET ”; В

Note

Because of line 70, all characters that appear in line 3 are
displayed in reverse field.

Syntax 2

LINE (C,R) - (C,R),"string" [,function code] ВЕ

You use this syntax to draw lines between specified points.
Column must range between 0 and the number of characters
per line minus 1. Row must range between 0 and the number
of lines per screen minus 1. For example, using the default
screen width of WIDTH 40,20, the range of C is 0 to 39 and the
range of R is 0 to 19.

You use the string option to specify the character used in
drawing a line. A string option specified as “Фф” draws a line of
diamonds.

2-27

The function code option assigns various visual attributes to
the screen. Function codes and attributes are listed in Table
2-4.

Table 2-4 LINE Function Codes for Syntax 2

BLACK AND
WHITE MODE

Normal

CODE

Black

1 Blue Secret
2 Red Blink
3 Magenta Secret
4 Green Reverse Field
5 Cyan Reverse Field-Secret
6 Yellow Reverse Field-Blink
7 White Reverse Field-Secret

The B option draws the border of a rectangle using the coordi-
nates of C and R as the upper left and lower right corners of
the rectangle. Specify F to fill the rectangle.

Example 2

LINE (15,4) -(24,14),49,B

See Figure 2-1A.

Syntax 3

LINE (C,R) - (C,R), point set [function code] [,B[F]]

This syntax uses dot graphics to draw a line between specified
points. The range of C is 0 to the number of characters per line
*2 minus 1. The range of R is 0 to the number of lines per
screen *4 minus 1. For example, WIDTH 80,25 gives C a range
of 0 to 159 and R a range of 0 to 99.

There are two possible values for the point set option, PSET
and PRESET. To draw a line, use PSET; to erase the line use
PRESET. Successively drawing and erasing a particular line
at various intervals across the screen simulates movement.

2-28

See Syntax 2 Юг an explanation of the remaining options
({function code] [,B[F]p.

Example 3

10’ PROGRAM TO ROTATE A LINE
20' 360 DEGREES 10 SUCCESSIVE TIMES
30 FOR J=1 TO 10
40 PRINT CHR$ (12)
50 FOR I=1 TO 20
60 LINE (19+1,41–0—(61—1,39+ D,PSET
70 LINE (19+141-0-(61-1,39+ 1), PRESET
80 NEXT I
90 FOR I=1 TO 19
100 LINE (40+1,20+ D -(40—1,60- D,PSET
110 LINE (40+1,20+0-(40-1,60-0,РКЕБЕТ
120 NEXT I
130 LINE (60,40) — (20,40), PSET
140 NEXT J

See Figure 2-1B.

LINE (139,80) - (150,87), PSET,2,B

See Figure 2-1C.

2-29

09!

|£ а шехя-у

(48'08

|
(08681)

osi
Ov!

з
и
ө
ш
ә
з
е
7
5

H
N
I
T

94
2

то
р

se
[d

ur
ex

e
Ке
цд
вт
р

от
чд

ел
о)

ог!

ог!

17
7

о
п
а
т

1

on

00!

06

08

09

€ o
d
u
r
e
x
7
-
g

(y's!) 05 Ov ot ог о!

00! 06 08 04 09 OS Ov og ог

о

2-30

LINE INPUT

LINE INPUT initializes a string variable to an entire line of

up to 255 characters, including delimiters. LINE INPUT does
not prompt a question mark (?) as the INPUT statement
unless it is included in the prompt string.

Syntax

LINE INPUT [“prompt string”;] string variable

Example

10 OPEN “OUT” FOR OUTPUT AS 1
20 LINE INPUT “CUSTOMER INFORMATION ?”;C

$
30 PRINT #1,C$

Note

The LINE INPUT statement in line 20 prompts CUSTOMER

INFORMATION? and waits for input. Use a Control-C to

escape the LINE INPUT statement and return the system to

direct mode. Conversely, enter CONT in direct mode to re-

sume program execution at the LINE INPUT statement.

LINE INPUT#

LINE INPUT¥ reads a line from disk as it was saved by the

LINE INPUT statement. LINE INPUT# reads all characters

in a sequential file up to a carriage return, ignoring all

previous delimiters.

Syntax

LINE INPUTZ file number, variable

2-31

Examples

10 PRINT CHR$ (12)
20 OPEN “OUT” FOR OUTPUT AS 1
30 FOR I=1 TO 3
40 LINE INPUT “Customer information ?";C$
50 PRINT #1,C$
60 NEXT I
70 CLOSE 1
75 PRINT
80 OPEN “OUT” FOR INPUT AS 1
90 FOR I=1 TO 3
100 LINE INPUTZ1,C$
110 PRINT C$
120 NEXT I
130 CLOSE 1
run

Customer information ? LINDA JONES 12.2,
3 OHIO
Customer information ? TOM JONES 12.3,4
FLORIDA
Customer information ? SAM JONES 12.4,5
MAINE

LINDA JONES 12.2,3 OHIO
TOM JONES 12.3,4 FLORIDA
SAM JONES 12.4,5 MAINE

LIST*

LIST lists all or part of a program currently in memory. Use
the ESC or STOP keys to halt a listing at any point of the
program.

The ESC key halts a listing, which remains in indirect mode.
The listing can be restarted simply by pressing any character
key, including a FUNCTION key, RETURN key, or the space
bar.

The STOP key halts a listing and returns system control to
direct mode. For a further listing, you must reenter one of the
various list options.

2-32

Syntax

LIST [line number] [{;} line number]

Examples

LIST

LIST 500

LIST 150-

LIST -150

LIST 50-100

LIST.

Note

Lists the entire program currently
in memory.

Lists line 500.

Lists all lines from line 150 to the

end of the program.

Lists all lines from the beginning
of the program to line 150.

Lists all lines from 50 to 100 inclu-

sive.

Lists a line that caused an error
and halted program execution.

A comma (,) can be substituted for a hyphen (-).

LLIST*

LLIST lists a complete or partial listing of the program cur-

rently in memory to the printer. All combinations available to

the LIST statement are available to LLIST, with the exception

of the period option (LIST).

Use the STOP key to stop printing a listing. You cannot use

the ESC key with LLIST.

Syntax

LLIST [line number] [{;} line number]

Examples

LLIST 50-100 Lists lines 50 to 100 inclusive to the

line printer.

2-33

LOAD*

LOAD loads a file on disk into memory, closes all open files,
and deletes all program lines and variables currently residing
in memory.

LOAD used with the R option (load and run) deletes program
lines and variables but does not close opened data files. Use
this option to chain programs too large to fit into available
memory.

You use the option drive number to specify a drive other than
Drive 1 (default).

Syntax

LOAD “[drive number:] filename” [,R]

Examples

LOAD “GAME” Loads the file GAME into memory
from Drive 1.

LOAD “GAME” В Loads and runs the file GAME.

LOAD “2:GAME” Loads the file GAME from Drive 2.

LOCATE

LOCATE positions the cursor at a specified location on the
screen. The coordinates of Column and Row must be within a
range of 0 to 254. If a specified coordinate is greater than the
current screen size, the system defaults to the last valid loca-
tion. For example, LOCATE 250,10 in 40-character mode de-
faults to LOCATE 39,10.

Specify a 0 for the option cursor switch to turn off the cursor.

Syntax

LOCATE column,row [,cursor switch]

Example

30 LOCATE 10,10
40 PRINT “Hello”

2-34

LSET, RSET

Before data of a random file can be stored on disk, move it into
the defined fields of a random file buffer. Use LSET and RSET
for this movement.

LSET left justifies data placed in a field; RSET right justifies
it. The system pads a string that is too short to fit in a
particular field with spaces and truncates a string that is too
long.

You can only move strings into a random file buffer. Convert
numeric data to a string before using LSET and RSET. The
functions that perform these conversions are MKI$, MKS$,
and MKD$. For more information concerning these functions,
see Chapter 3.

Syntax

LSET field name= string variable
RSET field name- string variable |

Example

10 OPEN “bozo” AS #1
20 FIELD #1,20 AS NAM$,10 AS INC$
30 INPUT “How many entries ”3j
40 FOR I=1 TO J
50 INPUT “Name ”;N$
60 INPUT “Salary ”; INC
70 INPUT “2 digit key КУ
80 LSET NAM$=N$
90 RSET INC$- MKS$ (INC)
100 PUT #1, К Y%
110 NEXT I
120 CLOSE 1
130 END
run
How many entries ? 1
Name ? Joe Shmoo
Salary ? 18000

2-35

Line 20 defines Ше random file buffer as:

NAM $ | INC $ |

0 20 30

Lines 80 and 90 move the entered data into the random file

buffer.

| oe Shmoo | 18000 |

0 20 30

The data is now ready to be stored on disk using the PUT
statement in line 100.

Note

N-Basic performs the string to numeric conversion in line 90
(MKS$ (INC)) before the data is right justified (RSET) to the
buffer.

MERGE*

MERGE merges a program on disk with a program currently
in memory. Use ASCII format to save the program on disk.
Statements with identical line numbers are overwritten by
the program called from disk.

The drive option specifies which disk the program is stored on.
Default is Drive 1.

Syntax

MERGE "[drive:] filename"

Example

The following lines have been stored on Disk 2 using ASCII
format under the name “DEMO”.

5 PRINT“ MERGE DEMO
30 PRINT “And now it is

2-36

40 PRINT “Time to make
50 PRINT “Payment

The next series of lines are entered at the keyboard.

10 PRINT “We have gathered
20 PRINT “And we have spent
30 PRINT “And we are broke

MERGE “2:DEMO”
ok
run

MERGE DEMO
We have gathered
And we have spent
And now it is
Time to make
Payment

MOTOR

MOTOR controls the motor of a cassette tape recorder, which
can be attached to the PC-8000. For MOTOR to work properly,
hook up the wires of the cassette correctly and set its play
button to ON. Connect the three color coded wires of the
cassette attachment cable as follows.

COLOR POSITION

Black Remote Jack
White Earphone Jack
Red Microphone Jack

Specify a 0 for the switch option to turn the motor off. Any
value greater than 0 turns the cassette motor on.

MOTOR used without the switch option turns the cassette
motor on or off depending on its last state.

Syntax

MOTOR [switch]

2-37

Examples

MOTOR 1 Turns the cassette motor on.

MOTOR 0 Turns the cassette motor off.

MOUNT*

Execute MOUNT before using a disk. When MOUNT is exe-
cuted, N-Basic reads the disk File Allocation Table (FAT) into
memory and checks for errors. If the FAT is free from errors,
the disk is mounted. If errors are detected, the system reads
one or both of the back-up tables. The message "x copies of
allocation bad on drive y" is displayed, indicating a new copy
of the disk should be made. If all FATs are bad, the message
"bad allocation tables" is displayed. This error is unrecover-
able and the disk cannot be mounted.

Syntax

MOUNT drive number,drive number...

Example

MOUNT 1,2 The disks on Drives 1 and 2 are
mounted.

NAME*

NAME renames a file already stored on disk.

Syntax

NAME “old filename” AS “new filename”

Example

NAME “TEST” AS “TEST2”
The old file name TEST is changed
to TEST2.

NEW*

NEW deletes the program currently in memory and clears all
variables. Use NEW to clear memory before entering a new
program.

2-38

бушах

КЕЙ

Example

NEW

ok

ON ERROR GOTO

ON ERROR GOTO sets up an error trap for any errors that
may occur during program execution. When an error is en-
countered, program control passes to the error routine

specified by the GOTO statement.

ON ERROR GOTO 0 disables the ERROR trap routine. Sub-
sequent errors are displayed in their normal fashion. If an ON
ERROR GOTO 0 statement is executed in an error trap
routine, the appropriate system error message is displayed
and control returns to direct mode.

Syntax

ON ERROR GOTO line number

Example

10 ON ERROR GOTO 100
20 FOO I=1 TO 3
30 PRINT I
40 NEXT I
45 STOP
100 PRINT “YOU MADE A MISTAKE”
110 END
run

YOU MADE A MISTAKE
ok

Note

The incorrect line would have normally displayed the mes-
sage “Syntax error in 20”.

2-39

ON GOSUB/ON GOTO

ON GOSUB/ON GOTO branches program flow to one of sev-

eral specified line numbers. The branch is contingent on the

value of the variable expression. For example, if the value of

the expression is 3, control branches to the line number

specified by the third value in the line list.

Syntax

ON expression { GOSUB | Ппе пее...

GOTO

Example

10 PRINT “ENTER A 1-IF YOU WISH TO WITHD

RAW 2-TO DEPOSIT 3-TO WITHDRAW FROM C

HECKING ACC. 4-TO DEPOSIT CHECKING ACC.

“INPUT A
20 ON A GOTO 50,70,90,100

Note

A 2 entered for the variable A branches control to line 70. АЗ
branches control to line 90. A negative number for the vari-
able A causes the error message “Illegal function call in line
20”. A value greater than the amount of line numbers in the
list, in this example a value greater than 4, branches control
to the next logical line.

OPEN

OPEN opens a random or sequential data file on disk for -
input or output. You must specify a file name and a file
number. The file name is the name the file will be stored
under. It must not exceed 6 characters in length excluding
file type identifier.*

*See SAVE for an explanation on file type identifiers.

2-40

The file number serves as а temporary abbreviated name
usually used in place of a file name. In this manner, a file
opened as (OPEN "data. dat" АЅ #1) сап be referenced as
РОТ#1 ог GET#1. The file number is valid until the file is closed.
If reopened, it is not necessary to use the same file number.

The choice of a file number is limited by the value that is
entered for the prompt “How many files" when booting up
disk BASIC. A 3 entered for this prompt limits the values of
file number to 1, 2, and 3.

The syntax for OPEN is slightly different for random and
sequential files. The three modes that can be used for sequen-
tial files are INPUT, OUTPUT, and APPEND (see Syntax 1).

* [NPUT — positions the file pointer at the beginning of a
file and is used primarily for sending data to memory
from disk.

e OUTPUT — positions the pointer at the beginning of a
file and is used primarily for writing data to a disk.

* APPEND — positions the pointer at the end of the file
and is used for adding additional data to a file.

The OPEN statement for random files is less complicated.
One mode is used for reading, writing, and appending data to
a disk (see Syntax 2).

Syntax 1 (Sequential Files)

OPEN “filename” [FOR mode] AS [4] filenumber

Example 1

10 OPEN “да ада?” FOR OUTPUT AS #1

Line 10 opens the file “data.dat” for data output to the disk.
The file is assigned file number 1.

Note

If you omit the option [FOR mode], the system defaults to
output mode.

2-41

Syntax 2 (Random Files)

OPEN “filename” AS [#] filenumber

Example 2

10 OPEN “data.dat” AS 2

Opens the data file “data.dat” under the temporary file

number 2.

OUT

OUT sends a byte of information to a machine port. The
integer “I” is the port number and J is the data to be transmit-

ted.

Syntax

OUT LJ

Example

100 OUT 32,100

PEEK AND POKE

You use PEEK to read a particular byte of information in
memory. The range of the integers for PEEK is the same as
that for POKE.

POKE writes a byte of information to memory. The integer "T"
is the memory address that must be in the range of 0 to
65535. A specified J is the data to be written to memory that
must be in the range of 0 to 255. I and J can be hex, octal or
decimal values.

Syntax

POKE I,J.
PEEK (1)

Example

10 POKE &H5A00,&HFF
20 PRINT PEEK (&H5A00)

2-42

POINT

POINT checks whether a dot is set at a specified location.

POINT returns value of minus 1 if a dot is set at the specified

location, or O if it is not set.

Syntax

POINT (column, row)

Example

200 IF POINT (50,65)- 0 THEN RETURN

300 PRESET (50,65)

PRINT

PRINT displays the values of numeric and string variables,

expressions, and user-defined prompts. The position these

items are displayed in is determined by the punctuation used

to separate the list of items to be printed.

The screen width is divided into 14 space zones. А comma used

to separate items places the data every 14 spaces. А semicolon

places data every other space.

A PRINT statement that is terminated by a comma or a

semicolon causes the next PRINT statement to begin printing

on the same line, spaced accordingly. A PRINT statement not

terminated by a comma or a semicolon is followed by a car-

riage return.

А question mark can be used as an abbreviated form of

PRINT.

Syntax

PRINT [*prompt" [;] item,item,item. . .]

Examples

In the following examples, line 20 is altered to illustrate

various punctuation combinations. Displays are shown in

the default screen width of 40 characters per line, 20 lines

per screen.

2-43

a) 10 FOR 1=1 ТО 6 b) 20 PRINT J;I+1;
20 PRINT I run
30 NEXT I 1223314 55 66 7
run

1

2
8
4
5
6

с) 20 PRINT LI-1, d) 20 PRINT LI-1;
run run

i 2 9 8 1 2 2
3 4 4 5 8 8 4 4
5 6 6 7 5 5 6 6

T

e) 20 PRINT LI-1,
run

1 2
2 3
8 4
4 5
5 6
6 7

10 INPUT X

20 PRINT X "SQUARED IS "X^2" AND";
30 PRINT X “CUBED IS "X^3
40 PRINT
50 GOTO 10
run
?8
8 SQUARED IS 64 AND 8 CUBED IS 512

74
4 SQUARED IS 16 AND 4 CUBED IS 64

?

Note

A PRINT statement used alone skips a line.

2-44

PRINT#

PRINT# writes an image of data as it is displayed on the
screen to a disk.

Syntax

PRINT# filenumber, [USING “format string”;] variable,
variable, ...

Examples

For this example, a program writes data to a file on disk.

10 REM PROGRAM -WRITE
20 OPEN “test” FOR OUTPUT AS #1
30 INPUT “NAME ”;N$
40 INPUT “CLAIM NO.”;C$
50 PRINT# 1,N$;C$
60 CLOSE #1
run

NAME ?SAM SPADE
CLAIM NO. ?123-321

ok

The program “READ” reads the newly created file.

10 REM PROGRAM-READ
20 OPEN “test” FOR INPUT AS #1
30 INPUT #1,N$,C$
40 PRINT N$,C$
50 CLOSE #1
run
Input past end in 20

The error message is caused by the program “WRITE”. The
PRINT# statement in line 40 of “WRITE” stores N$ and C$
as one. Hence, instead of SAM SPADE 123-321 being stored as
two separate strings, it is actually stored as one SAM
SPADE123-321. The INPUT# statement of “READ”, trying to
input two strings and finding only one, prompts the error
message.

2-45

To correct Ше problem, insert a delimiter between Ше input

strings of the “WRITE” program.

40 PRINTZ1 N$;“,”;C$

The program READ now yields the proper results.

run “READ”

SAM SPADE 123-321

ok

If a string to be written to disk contains delimiters of its own

(commas, semicolons, significant leading blanks, carriage

returns or line feeds), the string must be surrounded by

explicit quotation marks. Use the function CHR$(n), which

returns the character for the ASCII code (n). The ASCII

code for quotation marks (>) is 34.

To store (“SAM SPADE, DETECTIVE” 123-321), make the

following changes to the program “WRITE”.

35 DEL$=CHR$ (34)
40 PRINTZ1-DEL$;N$;DEL$;C$

list

10 OPEN “test” FOR OUTPUT AS #1
20 INPUT “NAME ";N$
30 INPUT “CLAIM NO. ”;C$
35 DEL$- CHR$ (34)
40 PRINT#1, DEL$;N$;DEL$;C$
50 CLOSE #1

run
NAME ?“SAM SPADE, DETECTIVE”
CLAIM NO. ? 123-321

ok

run “READ”
SAM SPADE, DETECTIVE
123-321
ok

10 OPEN “test” FOR OUTPUT AS #1
20 A=9.5:B=8.32:C=7:D=6.0

2-46

30 PRINT#1,A;B;C;D
40 CLOSE #1
run
ok

10 OPEN “test” FOR INPUT AS #1

20 INPUT #1,A,B,C,D

30 PRINT A;B;C;D
40 CLOSE #1
run
95 832 7 6

The syntax (PRINT# filenumber, USING “format string”)

controls the format of data to be placed on the disk. See PRINT

USING for further details.

Example

PRINT #1, USING “##.## ”;A,B.C

Note

A file number specified as а “—1” writes data to a cassette

tape.

PRINT USING

PRINT USING prints data to a formatted field. To define

the fields, use the various reserve symbols for string and

numeric data shown below.

String Data

There are two formatting characters that can be used to print

string data to a field:

! specifies that only the first

character of a given string is to

be printed.

"&--spaces&" displays a specified

number of characters in a

given string, determined

by two plus the number of

spaces between the
delimiter *&".

2-47

Syntax 1

PRINT USING “format symbol”; string variable;string
variable; ...

Example 1

10 А$= "good"
20 B$=“karma”
30 PRINT USING “!”;A$;B$
40 PRINT USING “Е &”;А$;В$

50 PRINT USING “& &" А: BS; “I”

gkarma
good karma !!
ok

Note

The PRINT USING statement left justifies and pads with
spaces data too short to fit a specified field and truncates a
field too long.

Numeric Data

There are several formatting characters that can be used to
print numeric data in a field.

Syntax 2

PRINT USING "format string”;variables,variables . . .

Example 2

Represents each digit of a field. An implied dec-
imal point can be used at any position of the
field. Zeros are placed in all unused positions
right of the decimal point and unused positions
left of the decimal are filled with blanks. Frac-
tions are displayed with at least one zero pre-
ceded by blanks left of the decimal. Data to be

2-48

placed in a field must contain its own decimal

point for proper results. Numbers are rounded

when necessary.

PRINT USING “###.##;1.,.2,1.2

1.00 0.20 1.20

When at the beginning of a format string, prints

the sign, plus or minus, of the value.

When at the end of a format string, displays

negative values with a trailing minus sign.

PRINT USING “+ ###.##73111.22,222.33,

—444.44

+ 111.22 + 222.33 - 444.44

PRINT USING “###.##— ”3111.22,222.33,

—444.44
111.22 222.33 444.44—

When а the beginning of a format field, fills all

leading spaces with asterisks. They are also

considered two digit positions.

PRINT USING “**##.## "12.39,

— 0.9,765.1,1.0
##19.40 **— 0.90 *765.10 ***1.0

When used immediately left of a decimal point,

places a comma every third digit left of the dec-

imal. When placed at the end of a format string,

the comma is displayed as part of the defined

field.

PRINT USING “########FF,
7,6000.00,1170000.20
6,000.00 1,170,000.20

PRINT USING “#####.##, ”;6000.00,

5000.125
6000.00, 5000.13

When placed at the end of a format string

specifies exponential notation. The carats

assign space for E-- nn to be displayed.

2-49

PRINT USING “###4.4#/™ 3123.56
12.36E+ 01 .

% is displayed by the system to warn that a value is
greater than a specified field.

PRINT USING “##.##;123.22
%123.22

РБЕТ, РВЕЗЕТ

РБЕТ and PRESET set or clear а dot at a specified location on
the screen. The dot is set by the coordinates column and row.
Column can be a value from 0 to the (number of characters per
line * 2) minus 1, and the value of row can be 0 to the (number
of lines per screen * 4) minus 1.

For example, WIDTH 80,20 limits the range of column from 0
to 159 and row from 0 to 79.

Use the option function code to specify a color in color mode or |
а screen attribute in black and white mode. Codes, colors, and
options are listed in Table 2-5.

Table 2-5 PSET, PRESET Option Codes

ATTRIBUTES
(BLACK AND
WHITE MODE)

COLOR
(COLOR MODE)

0 Black Normal
1 Blue Secret
2 Red Blink
3 Magenta Secret
4 Green Reverse Field
5 Cyan Reverse Field-Secret
6 Yellow Reverse Field-Blink
7 White Reverse Field-Secret

Syntax

PSET
{ PRESET | (column, row function code)

2-50

Example

40 PSET (20,20,2)

Note

PSET and PRESET will not always function properly out of
the graphic mode.

PUT

PUT writes the contents of a random buffer to a random disk
file. The file number is the number that the file was opened
under. Record number indicates the record that the contents
of the buffer are to be written to. If you omit record number,
the contents of the random buffer are written to the next
available record of the random file. See section on Random

Files.

Syntax

PUT #file number [,record number]

Example

10 OPEN “data.dat” AS #1
20 FIELD #1,30 AS NAM$,20 AS ADD$,20 AS CTY$,
5 AS STA$

130 РОТ #1,KY%

PUT@

PUT@ displays characters and dot graphics previously saved
by a GET@ statement in a specified area of the screen. You
define the rectangular display area by specifying the column
and row locations of the upper-left and lower-right corners.
Optionally, you can specify screen color or attributes for the
display area.

2-51

The C, R specifies the upper-left corner, and Ше с, г specifies
the lower-right corner.

With character display, values of C and c range from 0 to the
number of characters per line minus 1. Values of R and r range
from 0 to the number lines per screen minus 1. You can set
attributes in the same way as the attributes in the COLOR
statement (see “COLOR”) with character display.

With dot graphic display, values of C and c range from 0 to the
number of characters per line *2, minus 1. Values of R and r
range from 0 to the number of lines per screen *4 minus 1. You
can set a condition of PSET, PRESET, OR, AND, NOT, or XOR

only.

Use the PUT@ A statement (not PUT@) to display arrays
saved using a GET@ A statement.

Syntax

D — n X attribute РОТ (СЕ) - (c,r), | И

Example

100 DIM A% (256), B% (100)
400 GET@ (0,0) — (15,15), A%, G
700 GET@ A (10,10) — (19,19), B%
800 PUT@ (35,40) — (50,55), A%, ХОК
810 PUT@ А (30,13) — (39,21), B%

PUT@A

PUT@ A displays characters and dot graphics previously
saved by a GET@ A statement in a rectangular area of the

screen. You define the rectangular display area by specifying
the column and row locations of the upper-left and lower-right

corners.

For character or dot graphic display, values of C and c range
from 0 to the number of characters per line, minus 1. Values
of R and r range from 0 to the number of lines per screen,
minus 1.

2-52

Unlike Ше PUT@ statement, no attribute or condition can be

displayed. Use the PUT@ statement (not PUT@ A) to display
arrays saved by a GET@ statement.

Syntax

PUT@ A (C,R) - (су), array

READ

READ initializes variables to the data items of a DATA state-
ment on a one-to-one basis. The READ statement variables
can be of any data type, but must agree with the data type of
the items in the DATA statement.

A single READ statement can access several DATA state-
ments; several READ statements can access one DATA

statement.

If the number of variables in a READ statement exceeds the
number of data items, the message “Out of DATA in nn” is
displayed. If the number of DATA items exceeds the variables
of a READ statement, they are ignored.

Syntax

READ variable, variable, . . .

Examples

a) 10 FOR I-1 TO 5 b) 10 FOR I= 1 TO 5
20 READ A 20 READ A,B
30 PRINT A; 30 PRINT A;B
40 NEXT I 40 NEXT I
50 DATA 1,2,3,4,5,7 50 DATA 1,2,3,4,5,

run 6,7,8,9,10

123 $5 run
1 2
34
56
7 8
9 10

2-53

с) 5 WIDTH 80
10 PRINT "CITY","STATE"," ZIP"
20 READ C$,STA$,Z
30 DATA ELKGROVE, ILL, 60007
40 PRINT C$,STA$,Z
run
CITY STATE ZIP
ELKGROVE ILL 60007

Items in a DATA statement are read only once from start to
finish. To reread the DATA from the beginning, execute a
RESTORE command before the next READ statement.

5 WIDTH 80
10 PRINT *CITY","STATE"," ZIP"
20 READ C$,STA$,Z
30 DATA ELKGROVE, ILL, 60007
40 PRINT C$,STA$,Z
50 RESTORE
60 PRINT
70 READ C$
80 PRINT “THE CITY OF";C$;'GREETS YOU
run
CITY STATE ZIP
ELKGROVE ILL 60007

THE CITY OF ELKGROVE GREETS YOU.

REM ог”

REM is a nonexecutable statement used for explanatory re-
marks concerning a program. Remarks can follow a program
line if you precede the remark with an apostrophe. You can
also use the apostrophe as an abbreviated form of REM.

Syntax

REM [remark]

2-54

Example

4 REM PROGRAM NAME “RANLIS”
5 ' PROGRAM TO CREATE A RANDOM FILE

10 OPEN “data” AS #1

20 FIELD #1,30 AS NAM$,20 AS ADD$,20 AS CTY$,5 AS

STA$
30 INPUT “HOW MANY ENTRIES ";J

40 FOR 1=1 ТО J

50 INPUT “NAME ”;N$

60 INPUT “ADDRESS ”;A$

70 INPUT “CITY ”;C$

80 INPUT “STATE ”;S$
90 INPUT “2 DIGIT KEY ';KY9, ' KY% IS THE
100 REM ‘RECORD NUMBER

110 LSET NAM$=N$
' LINES 110 THROUGH 140

120 LSET ADD$= A$ "LEFT JUSTIFY DATA
‘IN THE RANDOM

130 LSET CTY$=C$ ' FILE BUFFERS

140 LSET STA$- S$
150 PUT #1,K Y%
160 NEXT I
170 CLOSE 1
180 END

REMOVE

REMOVE updates the File Allocation Table (FAT) on a disk

before it is physically removed from a drive. When executed,
three copies of the FAT currently residing in memory are
made to the FAT area of the disk.

Always execute the REMOVE command before taking a disk

out of a drive. Failure to do so causes two problems.

a. The FAT on the disk is not updated or checked for errors

if file allocation is changed.

b. The FAT of the previous disk is copied to the FAT area of

the current disk, making file accessing impossible.

Hence, all files on the new disk are effectively destroyed,

2-55

because Ше old FAT does not reflect the actual file loca-

tions on the new disk.

Syntax

REMOVE [drive, drive, . . .]

Examples

REMOVE 1,2 The disks in Drives 1 and 2 are
removed.

Note

Using REMOVE without the drive option removes the disks
on all drives.

RENUM

RENUM renumbers program lines and changes all line
number references following GOTO, GOSUB, THEN, ON...
GOTO, ON. . .GOSUB and ERL.

Syntax

RENUM [new number] [,old number] [,increment]

Examples

a) RENUM Renumber the entire program
starting at line 10 at incre-
ments of 10.

BEFORE AFTER
1 PRINT 1 10 PRINT 1
2 PRINT 2 20 PRINT 2
3 PRINT 3 30 PRINT 3
4 PRINT 4 40 PRINT 4

b) RENUM 2 Renumber the entire program
beginning at line 2 at 10-line
increments.

BEFORE AFTER
10 PRINT 1 2 PRINT 1
20 PRINT 2 12 PRINT 2

2-56

30 PRINT 3 22 PRINT 3
40 PRINT 4 32 PRINT 4

c) RENUM 100,,50 Renumber the entire program
beginning at line 100 at in-
crements of 50.

BEFORE AFTER
2 PRINT 1 100 PRINT 1
12 PRINT 2 150 PRINT 2
22 PRINT 3 200 PRINT 3
32 PRINT 4 250 PRINT 4

d) RENUM 300,150,50 Change line 150 to 300 and in-
crement all following lines by
50.

BEFORE AFTER
100 PRINT 1 100 PRINT 1
150 PRINT 2 300 PRINT 2
200 PRINT 3 350 PRINT 3
250 PRINT 4 400 PRINT 4

RESTORE

RESTORE resets the items of a DATA statement so they can
be reread by a READ statement. It also provides the option of
choosing the particular DATA statement to be read.

Syntax

RESTORE [line number]

Example

10 READ A,B,C
20 PRINT A;B;C
30 READ A,B,C,D,E,F
40 RESTORE 80
50 READ G,H,I
60 PRINT A;B;C;D;E;F;G;H;I
70 DATA 1,2,3,4,5,6,7,8
80 DATA 9,10,11,12

2-57

486782329 10 i

RESUME

Use RESUME to continue program execution after perform-
ing an error recovery procedure. Its options are as follows.

• RESUME [0] — resumes execution at the statement that

caused the error.

• RESUME NEXT — resumes program execution at the
line immediately following the faulty line.

• RESUME line number — resumes program execution at
the specified line number.

Syntax

line number

9
RESUME [Next |

Example

10 ON ERROR GOTO 80
20 A= 42
30 PRIN A
40 B=A*2+3
50 PRINT
60 PRINT B
70 END
80 PRINT “ERROR ERROR ”
90 RESUME NEXT
100 PRINT “CORRECT PROGRAM BEFORE
CONTINUING.”
run
ERROR ERROR

87

2-58

Because the NEXT option is used in line 90, program execu-
tion resumes at line 40. If RESUME 0 were used, the program
would enter an endless loop.

270 IF ERR=200 THEN RESUME 100

If the test condition is met, execution begins at line 80.

RUN

Use RUN to execute a program currently in memory, to start
program execution at a specific line, or to load a program from
disk into memory and execute it.

When used to load and run a program, RUN clears memory
and closes all previously opened data files. If used with the
“R” option, data files remain open.

Use the drive option to specify a file located on a drive other
than 1.

Syntax

RUN [“{drive:] filename”) В] |
Examples

RUN “2:list”,R Loads and executes the file “list”
on Drive 2 and leaves all pre-
viously opened data files open.

RUN 100 Begins execution of the program
currently in memory at line 100.

SAVE*

SAVE stores a file on disk, normally in compressed binary
format unless you specify the A option. “A” saves a file in
ASCII format, a sometime necessary format that takes more
room on disk. For example, the MERGE command requires
ASCII format files.

2-59

Use Ше drive option to specify a drive to save а Ше on other
than Drive 1.

The option extended identifier is used to easily identify the
type of file saved on disk. Extended identifiers are:

IDENTIFIER EXPLANATION

„аз Indicates standard program file.
.asc Identifies a file saved in ASCII format.
.dat Specifies data files.

If a file is saved using a file name already on a disk, the file on
disk is overwritten.

Syntax

SAVE "[drive:] filename [extended identifier]” [,A]

Example

SAVE "2:test.asc",A Saves the file "test" on Drive 2
using ASCII format. The ex-
tended identifier “азс” identifies
the file as being saved with ASCII
format.

Note

A file name cannot exceed 6 characters in length, and an
extended identifier cannot exceed 3.

SET

SET sets the read-after-write and write-protect attributes to a
file or a disk. Set the read-after-write attribute with a capital
“В”; set the write protect attribute with a capital "P". Апу
other character, including small “р” and “г”, cancels the cur-
rent attribute.

Syntax

SET | “filename” |Ен
drive

Examples

SET 1,“R” Sets Drive 1 to the read-after-write
attribute.

2-60

SET #1,”

SET “ртоЫ”,“Р”

SET 1,“p”

SET q^ »

Note

Write protects a data file opened

as #1.

Write protects the file “probl”.

Removes all attributes assigned to

Drive 1.

Removes all attributes assigned to

Drive 1.

Attributes set to a disk are held in memory and are only in

effect for the current work session. Attributes set to a file are

stored on disk and are permanent until changed.

STOP

STOP terminates program execution and returns control to

direct mode. You can use STOP at any location in a program.

When STOP is encountered, the message "Break in line nnn"

is displayed, where nnn is the line number of the statement.

To resume execution of the program, specify a CONT state-

ment.

Syntax

STOP

Example

10 INPUT A,B,C
20 K=A‘2*5.3

30 L- B^3/.26
40 STOP
50 M=C*K+100
60 PRINT M
run
? 1,2,3
PRINT L
15.3846

CONT
115.9

ok

2-61

SWAP

SWAP exchanges the values of two variables. Swapped vari-
ables must be of the same data type or “Type mismatch” is
displayed.

Syntax

SWAP variable,variable

Example

10 A$=“ONE”:B$=“ALL’:C$=“FOR”
20 PRINT A$;C$;B$
30 SWAP A$,B$
40 PRINT A$;C$:B$
run

ONE FOR ALL
ALL FOR ONE
ok

TERM

TERM puts the PC-8000 in terminal mode. Once in terminal
mode, the PC-8000 can communicate with other equipment
by the RS-232-C interface. The modifiers of TERM are de-
scribed as follows.

* word length — establishes the word length for the termi-
nal. An “a” specifies а 7-bit word (used in ASCII); а“)
specifies an 8-bit word (used in JIS).

* parity — is specified by a 0 for no parity, a 1 for odd
parity, or a 2 for even parity.

• clock drive ratio — can be 0 (division of 64) or 1 (division

of 16).

* auto line feed — a 1 automatically inserts a line feed
after each carriage return; a 0 disables auto line feed.

Syntax

TERM word length, parity, clock drive ratio, auto line feed

2-62

Example

TERM a,0,1,1

TRON,TROFF

TRON traces the execution of program statements. Use

TRON as an aid in debugging programs. It enables a trace

flag that displays each line number of a program as it is

executed. The trace flag is disabled by a TROFF, LOAD, or

NEW statement.

Syntax

TRON
TROFF

Example

10 K=10
20 FOR J=1 TO 2
30 Т- K* 10
40 PRINTR J;K;L
50 K=K+10
60 NEXT J
70 END
run
[10] [20] [30] [40] 1 10 20
[50] [60] [30] [40] 2 20 30
[50] [60] [70]
ok

TROFF
ok

The numbers enclosed in brackets are program line numbers

displayed in the order they are executed.

WAIT

WAIT suspends program execution until a specified machine

input port develops a specified bit pattern. The data read at

the portis XORed with the integer J, and ANDed with I. If the

result is zero, the system will loop back and repeat the process.

2-63

Program execution will not resume until the result of Ше
operation is not zero. If J is omitted, it is assumed to be zero.

Syntax

WAIT port, I [,J]

CAUTION

It is possible to enter an infinite loop
using the WAIT statement. If this
problem occurs, manually restart the
machine.

WIDTH

WIDTH determines the number of characters per line and
lines per screen for the display. The valid specifications for
lines per screen are 20 and 25. Specify characters per line as
80, 72, 40, and 36. The screen default is 40 characters and 20
lines.

Syntax

WIDTH characters [,lines]

Example

WIDTH 80,25 Sets the screen width at 80 charac-
ters per line and 25 lines per
Screen. .

NOTE

In color mode, the number of char-
acters and lines displayed is sub-
tracted by one. Hence, a width speci-
fied as 80, 20 is actually displayed as
79, 19.

2-64

СНАРТЕК 3

N-BASIC FUNCTIONS

N-Basic functions are described in this chapter. The functions
can be called from any program without further definition.

Arguments to functions are always enclosed in parentheses
and are abbreviated as follows.

* X and Y — represent numeric expressions.

* I and J — represent integer expressions.

* A$ and B$ — represent string expressions.

If you supply a floating-point value where an integer is re-
quired, N-Basic truncates the fractional portion and uses the
resulting integer.

ABS

ABS returns the absolute value of the expression X.

Syntax

ABS (X)

Example

PRINT ABS (7*(—5))

85

ok

ASC

ASC returns a numerical value that is the ASCII code of the

first character of the string A$. (See Appendix D for ASCII

codes.)

3-1

бушах

ASC (A$)

Example

10 A$=“TEST”
20 PRINT ASC (A$)
run
84

ok

ATN

ATN returns the arctangent of X in radians. The result is in
therange- 71/2 to 77/2. The expression X can be any numeric
type, but the evaluation of АТК is always performed in
single precision.

Syntax

ATN (X)

Example

10 INPUT X

20 PRINT ATN (X)
run
?8
1.24905
ok

ATTR$

ATTR$ returns the attribute of the drive specified by "drive"
or of the file specified by "filenumber" or filename.

Syntax
и

ATTR$ (| #filenumber)
ane filename"

Example

PRINT ATTRS (“1:spin”)
run
R

3-2

CDBL

CDBL converts X to a double precision number.

Syntax

CDBL (X)

Example

10 X = 454.67
20 Y# = CDBL (X)
30 PRINT Y#
run
454.6700134277344

CINT

CINT converts X to an integer by truncating the fractional
portion. If X is not in the range — 32768 to 32767, an “Over-
flow” error occurs.

Syntax

CINT (X)

Example

PRINT CINT (45.67)
45
ok

CHR$

CHR$ returns the ASCII character whose code is I. (ASCII
codes are listed in Appendix D.) You normally use this state-
ment to output special characters. For example, execution of

the statement CHR$ (7) sounds the buzzer.

Syntax

CHR$ (D

Example

PRINT CHR$ (66)
B
ok

3-3

COS

COS returns the cosine of X in radians. The calculation of

COS (S) is performed in single precision.

Syntax

COS (X)

Example

10 X=2*COS (.4)
20 PRINT X
run
1.84212

ok

CSNG

CSNG converts X to a single precision number.

Syntax

CSNG (X)

Example

10 X#=975.3421#
20 PRINT X#;CSNG (Xs)
run
975.3421 975.342
ok

CVI, CVS, CVD

These functions convert string values to numeric values.

Numeric values that are read from a random disk file must be

converted from strings back into numbers. CVI converts a

2-byte string to an integer. CVS converts a 4-byte string to

a single precision number. CVD converts an 8-byte string

to a double precision number.

3-4

бушах

CVI (2-byte string)
CVS (4-byte string)
CVD (8-byte string)

Example

70 FIELD# 1,4 AS N$, 12 AS B$,
80 GET# 1
90 Y=CVS (N$)

DATE$

ПАТЕ displays the date kept by an internal clock.

The PC-8000 clock keeps track of the time and date. You can
use this statement to output the date under control of your
program. The date is displayed in the following format:

YY/MM/DD

where YY represents the year, MM represents the month, and
DD represents the day. Each item must consist of two digits.

Syntax

DATES [="YY/MM/DD” |
Example

DATE$ = “81/01/10” Sets the date to January 10th, 1981.

Note

When power is turned on, the date is automatically set to

79/01/01.

DSKF

DSKF returns the number of clusters unused on the disk
specified by drive.

Syntax

DSKF (drive)

3-9

DSKI$

DSKI$ assigns the contents of the specified sector to a vari-
able name or to the #0 field buffer.

Syntax

DSKI$ (drive, track, sector)

Example

10 A$=DSKI$ (1,19,1)
20 PRINT A$

DSKO$

DSKO$ writes the content of random buffer #0 to the

specified sector.

The string that you write to the sector must be no longer than

256 characters. If you write a string shorter than 256 charac-

ters, the remainder of the sector is filled with zeros.

Syntax

DSKO$ drive, track, sector

Example

DSKO$ 1,5,2

CAUTION

Execution of this statement destroys
the previous contents of the sector
written to. DSKO$ is an N-Basic
statement.

EOF

EOF returns a 1 (true) if the end of a sequential file has been

reached. Use EOF to test for end-of-file while inputting to

avoid “Input past end” errors.

3-6

Syntax

EOF (file number)

Example

10 OPEN "listi.dat" FOR INPUT AS#1
20 IF EOF (1) THEN END
30 INPUT £1,N$,S$,D$
40 PRINT N$
50 PRINT S$
60 PRINT D$
70 PRINT
80 GOTO 20

ERR, ERL

You use ERR and ERL to handle errors in an error trap
routine.

When an error trap is entered, the error code is stored in the
variable ERR and the line number where the error occurred is
stored in the variable ЕВГ. You normally use ERR and ERL in
IF. . . THEN statements to control the flow in the error han-
dling routine.

Error code and line number must appear on the right side of
the equal signs. Because ERR and ERL are reserved words,
they cannot appear on the right side of the equal sign in LET
statements.

То return from an error handling routine, use the RESUME
statement.

Syntax

IF ERR = error code THEN...

IF ERL = line number THEN...

Example

10 ON ERROR GOTO 500

3-7

500 REM error handling routine
510 IF ERR = 4 THEN RESUME 100
520 IF ERL = 150 THEN RESUME 150
530 Х-15
540 RESUME 0

Note

See Appendix C for error code listings.

EXP

EXP returns “e” to the power of X, which must be less than or

equal to 87.3366. If EXP overflows, the “Overflow” error

message is displayed.

Syntax

EXP (X)

Example

10А = 5
20 PRINT EXP (A- 1)
run
54.5982
ok

FIX

FIX returns the integer part of X. FIX (X) is equivalent to

SGN(X)*INT (ABS(X)). The major difference between FIX

and INT is that FIX does not round to the next lower number

for a negative value.

Syntax

FIX (X)

Example

PRINT FIX (58.75)
58
ok

3-8

PRINT FIX (- 58.75)
m
ok

FPOS

FPOS is the same as the LOC function except that the physi-
cal sector number is always returned. For details, see LOC.

Syntax

FPOS (file number)

FRE

Arguments to FRE are dummy arguments. If the argument is
0 (numeric), FRE returns the number of bytes in memory not
being used by N-Basic. If the argument is a string, FRE
returns the number of free bytes in string space.

Syntax

FRE (0)
Example

PRINT FRE (0)
14542

ok

HEX$

HEX$ returns a string that represents the hexadecimal
value of the decimal argument. X is truncated to an integer
before HEX$ (X) is evaluated.

Syntax

HEX$ (X)

Example

10 INPUT X
20 А$= HEX$ (X)
30 PRINT X "DECIMAL IS" A$ * HEXADECIMAL?”
run

3-9

782
32 DECIMAL IS 20 HEXADECIMAL
ok

INP

INP returns the byte read from port I. I must be in the range
0 to 255. INP is the complementary function to the OUT
statement.

Syntax

INP (D

Example

100 A=INP (255)

INPUT$

INPUTS returns I characters entered from the keyboard or

the file opened under the number J. Characters entered from

the keyboard are not echoed. All control characters are

passed, except for Control-C, which you use to terminate

execution of the INPUT$ function.

Syntax

I INPUT$ qi [4] р

Example

100 PRINT INPUTS (6)

INSTR

INSTR searches for the first occurrence of string B$ in A$

and returns the position where Ше match is found. Optional

offset I sets the position for starting the search. I must bein

the range 0 to 255. If I > LEN(A$) or if A$ is null or if B$

cannot be found, INSTR returns 0. If B$ is null, INSTR

returns I or 1. A$ and B$ can be string variables, string

expressions, or string literals.

3-10

Syntax

INSTR ([L]A$,B$)

Example

10 A$ = “ABCDEB”
20 B$ = “B”
30 PRINT INSTR (A$,B$);INSTR (4,A$,B$)
run

26
ok

INT

INT returns the largest integer =X.

Syntax

INT (X)

Example

PRINT INT (99.89)
99
ok
PRINT INT (-12.11)

—13
ok

LEFT$

LEFT$ returns a string composed of the leftmost I characters
of A$. I must be in the range 0 to 255. If I is greater than
LEN(A$), the entire string (A$) is returned. If I=0, the null
string (length zero) is returned.

Syntax

LEFT$ (A$,D

Example

10 A$=“DISK BASIC”
20 B$=LEFT$ (A$,4)
30 PRINT B$

3-11

LEN

LEN returns the number of characters in A$. Nonprinting
characters and blanks are counted.

Syntax

LEN (A$)

Example

10 A$= “NEC PC-8000”
20 PRINT LEN (A$)
LT

ok

LOC

With random disk files, LOC returns the next record number
to be used if a GET or PUT statement (without record number)
is executed. With sequential files, LOC returns the number of
sectors (256 byte blocks) read from or written to the file since
it was opened.

Syntax

LOC (file number)

Example

100 PRINT LOC (1)

LOF

LOF returns the largest record number of a random disk file
accessed by a PUT or GET statement.

Syntax

LOF (file number)

Example

110 IF REC%>LOF (1) THEN PRINT “Amount error"

LOG

LOG returns the natural logarithm of X, which must be
greater than zero.

3-12

бушах

LOG (X)

Example

PRINT LOG (45/7)
1.86075
ok

LPOS

LPOS returns the current position of the line printer print
head within the line printer buffer. X is а dummy argument.

Syntax

LPOS (X)

MID$

MID$ returns a string of length J characters from A$ begin-
ning with the Ith character. I and J must be in the range 0 to
255. If you omit J or if there are fewer than J characters to the
right of the Ith character, all rightmost characters beginning
with the Ith character are returned. If I>LEN(A$), MID$
(A$) returns a null string.

Syntax 1

MID$ (АВГ [,J])

Example 1

10 A$=“GOOD”
20 B$- "MORNING EVENING AFTERNOON”
30 PRINT A$;MID$ (B$,8,8)

ok
run
GOOD EVENING

ok

3-13

Syntax 2

J characters from Ше Ith character in A$ are replaced by J

characters from the top in B$.

MID$ (A$,I [,J])=B$

Example 2

10 А$= “123456789”
20 B$=“ABCDEF”
30 MID$ (A$,4,3)=B$
40 PRINT A$
run
123 ABC789

ok

Also see the LEFT$ and RIGHT$ functions.

MKI$, MKS$, MKD$

These functions convert numeric values to string values. Any
numeric value that is placed in a random file buffer with an
LSET or RSET statement must be converted to a string. MKI$
converts an integer to a 2-byte string. MKS$ converts a single
precision number to a 4-byte string. MKD$ converts a double
precision number to an 8-byte string.

Syntax

MKI$ (integer expression)
MKS$ (single precision expression)
MKD$ (double precision expression)

Example

90 AMI-(K- T)
100 FIELD #1, 8 AS D$, 20 AS №, ...
110 LSET D$ = MDS$ (AMI)
120 LSET N$=A$

160 PUT#1

3-14

ОСТ

OCT$ returns а string that represents Ше octal value of the

decimal argument. X is rounded to an integer before OCT$ (X)
is evaluated.

Syntax

OCT$ (X)

Example

PRINT OCT$ (24)
30
ok

PEEK

PEEK returns the byte (decimal integer in the range 0 to 255)
read from memory location I, which must be in range 0 to

65536. PEEK is the complementary function to the POKE

statement.

Syntax

PEEK (D

Example

PRINT PEEK (741)
243

ok

POS

POS returns the horizontal position of the cursor. (The

leftmost position is 0.) The argument is a dummy.

Syntax

POS (0

Example

10 LOCATE 5,5: PRINT POS (D
run
5

3-15

CSRLIN

CSRLIN returns the vertical position of the cursor. (The top of
the screen is 0.) Unlike the POS function, a dummy argument
is not required.

Syntax

CSRLIN

Example

LOCATE 4,5:PRINT POS (0); CSRLIN
4 5

RIGHT$

RIGHTS returns Ше rightmost I characters of string A$. If
I2LEN(A$) then A$ is returned. If I=0, the null string
(length zero) is returned.

Syntax

RIGHT$ (A$,D

Example

10 A$=“N-BASIC”
20 PRINT RIGHT$ (A$,5)
run
BASIC
ok

RND

RND returns a random number between 0 and 1. The value of
I will vary the random number returned as follows:

I=0 - generates the same number for a given value I.
I>0 - generates random numbers between 0 and 1.

3-16

бушах

RND (D

Example

10 FOR I-1 TO 5
20 PRINT INT (RND (1)*100);
30 NEXT I
run
24 i380 31 51 5

ok

SGN

SGN returns the sign of the value X.

Syntax

SGN (X)

If X > 0, SGN (X) returns 1.
If X = 0, SGN (X) returns 0.
If X < 0, SGN (X) returns - 1.

Example

ON SGN (X) 2 GOTO 100,200,300

Control branches to 100 if X is negative, to 200 if X is 0, and to
300 if X is positive.

SIN

SIN returns the sine of X in radians. SIN (X) is calculated in
single precision.

Syntax

SIN (X)

Example

PRINT SIN (9)
.412118

3-17

SPACE$

SPACE$ returns a string of spaces of length X. The expression
X is rounded to an integer and must be in the range 0 to 255.

Syntax

SPACE$ (X)

Example

10 FOR I-1 TO 5
20 X$ = SPACES (П
30 PRINT ХЪЛ
40 NEXT I
run
1

2

ok

SPC

SPC prints I blanks and can only be used with PRINT and
LPRINT statements. I must be in the range 0 to 255.

Syntax

SPC (D

Example

PRINT *OVER" SPC (15) "THERE"
OVER ''HERE
ok

SQR

SQR returns the square root of X.

3-18

бушах

SQR (X)

Example

10 FOR X = 10 TO 25 STEP 5
20 PRINT X,SQR (X)
30 NEXT X

10 3.16228
15 3.87298
20 4.47214
25 5

STR$

STR$ returns a string representation of the value of X.

Syntax

STR$ (X)

Example

PRINT “$” + STR$ (15+ 3)
$ 18
ok

STRING$

STRING$ returns a string of length I whose characters have
ASCII code J or the first character of A$.

Syntax

STRINGS$ (LJ)
STRING$ (1,A$)

Example

10 B$ = STRING$ (10,45)
20 PRINT B$ "MONTHLY REPORT" B$
run
Menem MONTHLY REPORT.

3-19

Note

In addition, A$ can be specified as any character by enclosing
the character in quotes (“-”).

TAB

TAB spaces to position I. If the current print position is al-
ready beyond space I, TAB has no effect. Space 0 is the
leftmost position. I must be in the range 0 to 255. TAB can
only be used in PRINT and LPRINT statements.

Syntax

TAB (1)

Example

10 PRINT “NAME” TAB (15) “AMOUNT”:PRINT
20 READ A$,B$
30 PRINT A$ TAB (15) B$
40 DATA "G.T.JONES", “$25.00”
run
NAME AMOUNT
G.T. JONES $25.00
ok

TAN

TAN returns the tangent of X in radians. TAN (X) is calcu-
lated in single precision. If TAN overflows, the "Overflow"
error message is displayed and execution halts.

Syntax

TAN (X)

Example

10 G=5
20 Y = G* TAN (6)/2
30 PRINT Y
run
ser bi
ok

3-20

USR

USR calls your assembly language subroutine with the ar-
gument X. “digit” is in the range 0 to 9 and corresponds to the
digit supplied with the DEFUSR statement for that routine.
See Appendix A.

Syntax

USR digit (X)

Example

40 B = T*SIN (Y)
50 C = USR (B/2)
60 D = USR (B/3)

TIME$

TIMES displays or sets the time kept by the internal clock.
The time is displayed in the following format:

HH:MM:SS

where the value of HH ranges from 00 to 23 and the values of
MM and 58 range from 00 to 59. When power is turned on, the
time is automatically set 00:00:00. Therefore, the value of
TIMES represents the time period that the machine has been
used, unless the time is reset.

Also, you can set the time by entering the following:

TIME$= “12:34:56”

Syntax

TIMES ["time"]

Example

a) PRINT TIME$ ЬЫ TIME$ = “08:30:40”
12:34:59
ok

3-21

VAL

VAL returns the numerical value of string A$. If the first

character of A$ is not +, —, &, or a digit, VAL (A$)=0.

Syntax

VAL (A$)

Example

10 INPUT A$
20 PRINT VAL (A$) +32
run
25

VARPTR

VARPTR is usually used to obtain the address of a variable or

array so it can be passed to an assembly language subroutine.

A function call of the form VARPTR (A(0)) is usually specified

when passing an array, so that the lowest-addressed element

of the array is returned.

Syntax 1

VARPTR (variable name)

Returns the address of the first byte of data identified with a

variable name. A value must be assigned to a variable name

before execution of VARPTR. Otherwise an “illegal function

call” error results. Any type variable name can be used

(numeric, string, array), and the address returned will be an

integer in the range 32767 to – 32768. Ifa negative address is

returned, add it to 65536 to obtain the actual address.

3-22

бушах 2

Returns Ше starting address of the disk I/O buffer assigned to
file number.

VARPTR (# file number) [, disk]

Example

10А=5
20 Х = VARPTRA (A)
30 IF X < 0 THEN Х=Х+65536
40 PRINT X

Note

All simple variables should be assigned before calling
VARPTR for an array because the addresses of arrays change
whenever a new simple variable is assigned.

3-23

СНАРТЕК 4

SEQUENTIAL FILES

A sequential file is a data file that stores its data items one
after another in sequence. Sequential files are easy to create
but are limited in flexibility and speed when it comes to
accessing data. For this reason, sequential files are best
suited for jobs where all the data must be read all the time.

The statements and functions that are used with sequential
files follow.

OPEN PRINT #
INPUT# PRINT# USING
LINE INPUT # CLOSE
EOF LOC

NOTE

When the LOC function is evaluated
for a sequential file, the returned
value is the number of sectors used
since the file was opened.

OPEN STATEMENT

Before performing I/O to a sequential file, the file must be
opened. The OPEN statement declares the following three
items to the system:

a. the name of the file for which I/O is requested,

b. the type of operation being requested (input or output),
and

c. the temporary file number.

Example

OPEN “datal” FOR INPUT AS #1

The example opens the file “datal” for INPUT (reading) and
assigns the temporary file number 1. The file number serves
as a kind of abbreviated name that is used by the PRINT# and

4-1

INPUT statements to reference Ше file. Once a file is closed

the file number is no longer valid. Hence, each time a file is

opened it can be assigned a different number.

File numbers are determined by your response to the system

prompt *How many files" displayed when booting up Disk

Basic. Your reply determines the number of I/O buffers that

will be reserved in memory. The larger the number specified,

the less RAM available, thus specify a number no larger than

necessary. For most applications, three I/O buffers should be

sufficient. A 3 given in reply to the prompt would allow you to

use the file numbers 1, 2, and 3.

A sequential file can be opened for INPUT, OUTPUT, or

APPEND. INPUT reads a file from disk, OUTPUT writes a

file to disk, and APPEND adds data to the end of a previously

created file. These modes of operations are indicated by the

FOR option in the OPEN command. If FOR is omitted, the

OUTPUT mode is assumed.

CREATING SEQUENTIAL FILES

Create sequential files according to the following steps.

OPERATION EXAMPLE

Open file OPEN “даа!” FOR OUTPUT
AS #1

Write data to a PRINT 41,N$;,58$;", D$
file using PRINT#
or PRINT USING
statement.

Example

10 REM THIS PROGRAM WRITES A SEQUENTIAL FILE
TO DISK
20 OPEN “datal” FOR OUTPUT AS #1
30 FOR I=1 TO 4
40 INPUT “Name "SNS
50 INPUT “SECTION _ ”;S$
60 INPUT “DATE "5H$

70 PRINT £1,N$;,55$;,;H$

4-2

80 PRINT
90 NEXT I
100 CLOSE #1
run

NAME? MICKEY MOUSE
SECTION? ADVERTISEMENT
DATE? 79/04/01

NAME? SHERLOCK HOLMES
SECTION? INVESTIGATION
DATE? 47/09/15

NAME? AUDREY HEPBURN
SECTION? PUBLIC RELATIONS
DATE? 52/01/14

NAME? SUPERMAN
SECTION? SECURITY
DATE? 79/12/31

ok

After a file is created, it probably will have to be read. The
read operation requires two steps.

OPERATION EXAMPLE

Open file OPEN “datal” FOR INPUT AS #1

Read data from a file INPUT #1,N$,S$,D$
using INPUT#or line
LINE INPUT#
statements.

Example

10 REM PROGRAM TO READ DATA FROM A
SEQUENTIAL FILE
20 OPEN “datal” FOR INPUT AS #1
30 IF EOF (1) THEN END
40 INPUT #1,N$,S$,D$
50 PRINT N$
60 PRINT S$
70 PRINT D$
80 PRINT
90 GOTO 20

4-3

The EOF statement in line 20 checks for Ше end of Ше data

file to prevent the program from reading more data items

than are on the disk and causing the “Input past end error”.

APPENDING DATA TO A FILE

When adding data to a previously created sequential file,

open the file in APPEND mode. For example, by simply edit-

ing line 20 in the example program to create a file to “OPEN

"datal" FOR APPEND AS #1”, you can append data to the file

"datal". If you tried to add data to “дава!” by running the

original program, all previously stored data would have been

lost.

Example

10 REM PROGRAM TO APPEND DATA TO A FILE

20 OPEN “даа?” FOR APPEND AS #1
30 FOR I-1 to 4

4-4

СНАРТЕК 5

RANDOM FILES

Random files are used when it is necessary to access data from
any point within a data file. The random files flexibility is
accomplished by structuring the file in units of records that
can be accessed individually. A record is a unit of data trans-
ferred in one logical I/O operation. To achieve maximum
access speed, Disk Basic uses fixed length records with a
length of 256 bytes. Data is placed in fields in the records
using the FIELD statement.

The statements and functions that are used to create random

files follow:

OPEN FIELD
PUT CLOSE
MKI$ CVI
MKS$ CVS
MKD$ CVD
LSET RSET
LOC LOF
GET

CREATING RANDOM FILES

The following steps are required for creating random files:

a. Open file

Example: OPEN “ran” AS #1

b. Execute a FIELD statement to allocate variable space to
the random file buffer.

Example: FIELD #1,20 AS N$,4 AS A$,8 AS P$

5-1

с. Execute an LSET or RESET statement to move Ше data

to the random buffer. Numeric data must be converted to

strings before it is placed in the buffer. The functions

MKI$, MKS$, and MKD$ are used for this operation.

You use MKI$ to convert integers to strings, MKS$ to

convert single precision numbers to strings, and MKD$

to convert double precision numbers to strings.

Example: LSET N$= X$
LSET A$=MKS$ (AMT)
LSET P$=TEL$

d. Execute a PUT statement to write buffer contents to

disk.

Example: PUT #1, CODE

Example

5 REM PROGRAM TO WRITE A RANDOM FILE TO

DISK
10 OPEN “ran” AS #1
20 FIELD #1, 20 AS N$,4 AS A$, 8 AS P$
30 INPUT “Two digit record code ”;CODE%
40 INPUT “Name ”;X$
50 INPUT “Amount ”;AMT
60 INPUT “Telephone ”;TEL$
70 PRINT
80 LSET N$= X$
90 LSET A$=MKS$ (AMT)
100 LSET P$- TEL$
110 PUT #1,CODE%
120 GOTO 30

The INPUT statement in line 30 initializes CODE% to a

record number. The number and the record are both written to

disk in line 110. You use the record number to retrieve the

record when necessary.

ACCESSING RANDOM FILES

The following steps are necessary to access random files.

a. Open file

Example: OPEN "ran" AS #1

5-2

b. Execute а FIELD statement to allocate random buffer

space to input variables.

Example: FIELD #1, 20 AS N$,4 AS A$,8 AS P$

NOTE

In programs that perform both input
and output to the same random buf-
fer, only one OPEN and one FIELD
statement can be used.

c. Read the desired record into the random buffer with a

GET statement.

Example: GET #1,CODE%

d. Access the data within the random buffer. Numeric data

that was converted to strings can be changed back to

numeric using the functions CVI, CVS, and CVD. CVI

reconverts integers, CVS reconverts single precision

numbers, and CVD reconverts double precision num-

bers.

Examples: PRINT N$
PRINT CVS (A$)

Example

10 REM PROGRAM TO READ A RANDOM FILE

20 OPEN “ran” AS #1
30 FIELD #1,20 AS N$,4 AS A$,8 AS P$
40 INPUT “2 digit code ”;code%
50 GET #1,CODE%
60 PRINT N$
70 PRINT USING “$$###.##’;CVS (A$)

80 PRINT P$
90 PRINT
100 GOTO 30

The record, whose number is entered in line 40, is retrieved b:

the GET statement in line 50 and then displayed.

5-3

СНАРТЕК 6

DISK BACKUP

To minimize any losses that might occur from a damaged disk,
backup copies periodically should be made and safely stored
away. This chapter describes the “format” and “backup” pro-
grams stored on the system disk.

FORMATTING A DISK

Before a disk can be used, it must be formatted. The “format”
program is performed by the FORMAT command. The FOR-
MAT command performs level one formatting, which pre-
pares the disk for reading and writing only. No other N-Basic
functions, commands, or statements will execute. In this
manner, a disk can be used strictly for data files.

Example: FORMAT 2

CAUTION

Formatting a disk erases all files. Be
careful not to destroy any important
files.

DISK BACKUP

The program “backup” that comes with the system disk is
used to perform level 2 formatting. Level 2 formatting pre-
pares the disk for I/O, copies all files, and allows you to copy
the N-Basic operating system. The following is a step-by-step
explanation of how to use the backup program.

a. Mount the system disk on drive 1 and load the “backup”
program.

b. To copy the system disk, skip to step c. Otherwise, re-
move the system disk from drive 1 and mount the disk to
be copied.

c. Place the destination disk in drive 2.

6-1

d. Run the “backup” program. The system displays Ше
prompt:

Back up a disk
Mount master disk on drive 1, then hit return.

e. Enter a carriage return (press RETURN) in response to
this prompt. The system then displays:

Mount new disk on drive 2, then hit return.

f. Again, press RETURN and the next prompt appears:

Format disk 2 (y/n)?

g. Enter a “y” if the destination disk has not been pre-
viously formatted and the “backup” program formats
the disk and begins copying. Enter an “n” if the destina-
tion disk has already been formatted and the copying
will begin immediately.

Example

run “backup”
Back up a disk

Mount master disk on drive 1, then hit return

Mount new disk on drive 2, then hit return

Format disk 2 (y/n)? n
Formatting disk 2
Copying track 0
Copying track 1
Copying track 2
Copying track 3
Copying track 4
Copying track 8
Copying track 9
Complete
ok

6-2

APPENDIX A

MACHINE LANGUAGE SUBROUTINES

The USR function allows N-Basic programs to call user sub-
routines, written in machine language, in the same manner
as it calls intrinsic functions.

Memory Allocation

Memory space for user subroutines written in machine lan-
guage must be secured before the program is loaded. As shown
in the memory map, the area that can be used is at the very top
of user RAM. The size of the area is determined by the second
parameter in the CLEAR statement. As the top of user RAM
is address 59903 (E9FF,), subtract from this value the
number of bytes required for machine language subroutines
and execute a CLEAR statement with this difference as the
second parameter. This action causes N-Basic to consider this
value as the upper boundary of its program area, making all
locations from that point up to E9FF available for use by
machine language routines.

For example, to secure 100 bytes of memory for machine
language subroutines, execute the following command.

CLEAR 300, 59903-100

When machine language subroutines are called by N-Basic,
the stack pointer is set so as to allow the subroutine to use up
to eight stack levels (16 bytes). If more stack area is required,
save the stack pointer, reset it to an area allocated for machine
language subroutines, and restore it to its original value
before returning to N-Basic.

Calling the USR Function

The format of the USR function follows.

USR number (argument)

The option number can be an integer from 0 to 9, and (argu-
ment) can be any numeric or string expression.

А-1

А correspondence is formed between the USR function and a
DEFUSR statement for which the same number parameter

has been specified, and when the USR function is called

program execution jumps to the address specified in this
DEFUSR statement.

When the USR function is called, a value is loaded into the A
register to indicate the argument type. The values used and

their meanings follow:

VALUE IN
REGISTER A ARGUMENT TYPE

2 Two byte integer (2s complement)
3 String
4 Single-precision floating point
8 Double-precision floating point

If the argument type is numeric, the register pair [HL] con-
tains the address of the floating-point accumulator (FAC-3)
where the actual value is stored.

When (argument) is an integer:

• FAC-3 contains the lower eight bits of the argument.

• FAC-2 contains the upper eight bits of the argument.

When (argument) is а single-precision floating-point

number:

» FAC-3 contains the lower eight bits of the significant

value.

» FAC-2 contains the middle eight bits of the significant

value.

• FAC-1 contains the upper seven bits of the significant

value.

Bit 7 of FAC-1 is the sign bit (0= +,1 = —).

When (argument) is a double-precision floating-point

number, * FAC-7 through FAC-4 contains the additional four
bytes of the significant value. (FAC-7 contains the lower eight

bits.)

А-2

When (argument) is а string, the DE register рап points to
the three-byte “string descripter.” Byte zero of the string
descripter contains the length of the string (0 to 255 bytes),
and bytes one and two contain the address of the first byte of
the string.

NOTE

When (argument) is a string con-
tained within the program, the DE
register pair points at the string. In
such a case, there is the possibility
that a string within an N-BASIC
program will be incorrectly handled
or destroyed by the subroutine,
causing unpredictable execution
results. To avoid this, add the
character combination: +“” to a
string. For example:

A$ = “N-BASIC” + [eo

As this string will now be copied to the string space in mem-
ory, its copy can be referenced.

Normally, the type of value returned from a user subroutine is
the same as the argument specified for the user subroutine.
However, an integer value can always be returned in the HL
register pair by calling the MAKINT routine. The procedure
for calling this routine follows:

PUSHH Save return value
LHLD 24H Head address of makint
XTHL Save in stack, restore

contents of HL
RET Return

A-3

APPENDIX В

MEMORY МАР

address in address in
hexadecimal contents decimal

0000 опен 0

BASIC Interpreter
(in ROM)

24 К

24576

32768
Program source
statements are

loaded from this
point for systems
containing 32 KB
of RAM.

6000

ROM expansion
area

8000

Program Area and Area
for Simple Variables
and Array Variables

APPENDIX С

ERROR MESSAGES

Error Message

NEXT without FOR

Syntax error

RETURN without

GOSUB

Out of Data

Illegal function call

Overflow

Out of memory

Undefined line

number

С-1

Meaning

FOR and NEXT statements
do not correspond properly
(too many NEXT state-
ments).

A line has been encoun-
tered that contains an in-
correct sequence of charac-
ters (such as a misspelled
statement).

A RETURN statement has
been encountered for which
there is no previous, un-
matched GOSUB state-
ment.

A READ statement has
been executed when there
are no DATA statements
with unread data remain-
ing in the program.

A parameter that is out of
range has been passed to a
math or string function.

The result of calculation is
too large to be represented
in N-Basic.

A program is too large or
has too large array vari-
ables.

A reference has been made

to a line number that does
not exist.

10

11

12

13

14

15

16

17

18

Error Message

Subscript out
of range

Redimensioned array

Division by zero

Illegal direct

Type mismatch

Out of string space

String too long

String formula
too complex

Can’t continue

Undefined User

Function

C-2

Meaning

An array element has been
referenced with a subscript
that is outside the dimen-
sion of the array.

Two DIM statements have
been given for the same
array.

Division by zero has been
encountered in an expres-
sion.

A statement that is illegal
in direct mode has been en-
tered as a direct mode

command.

A derived value type does
not match that assigned.

String variables exceed the
amount of allocated string
space.

A string is too long (more
than 255 characters).

A string expression is too
long or too complex. (An il-
legal nesting level of par-
entheses, etc.)

А nonexecutable CONT
command has been encoun-
tered. (The pointer is de-
stroyed, etc.)

A user function has been
called before the function
definition (DEF statement

is given).

No RESUME An error trapping routine
with no RESUME state-
ment has been encoun-
tered.

RESUME without А RESUME statement has
error been encountered before an

error trapping routine is
entered.

Unprintable error An error message is not
available for the error con-

dition that exists.

Missing Operand An expression contains an
operator with no operand
following it.

Line buffer overflow | Line that has too many
characters.

Position not on Specified cursor location is
Screen out of screen range.

Bad File Data File data on disk is improp-
erly formatted.

Disk BASIC Feature | An attempt has been made
to execute a disk command
with no disk connected.

Communication I/O buffer for peripheral
Buffer Overflow devices has overflowed.

Port not initialized The LSI in the port inter-
face is not initialized.

Tape read ERROR An error has been found in
input from a cassette tape.

Error message for disk functions

50

51

52

58

54

55

56

57

58

59

(Ра disk unit is not attached, error messages with
codes 21 and 26 will be printed.)

Field overflow

Internal error

Bad file number

File not found

Bad file mode

File already open

Disk not mounted

Disk I/O error

File already exists

Disk already
mounted

A FIELD statement is at-
tempting to allocate more
than 256 characters of
string variables.

An internal malfunction

has occurred in N-BASIC
for disk.

A statement or command
has referenced a file with a
file number that is not
open.

A LOAD, KILL, or OPEN
statement has referenced a
file that does not exist on
the current file.

An attempt has been made
to access a sequential file as
a random file or vice versa.

An OPEN or KILL state-
ment has been issued for a
file that is already opened.

An attempt has been made
to access a disk that has not

been mounted.

A disk I/O error that can-

not be recovered from has

occurred.

The file name specified in a
NAME statement is identi-
cal to a file name already in
use on the disk.

A MOUNT command was
executed on a drive that is
already mounted.

Еггог

Соде

60

61

62

63

64

65

66

67

68

69

70

71

72

73

Error Message

Disk Full

Input past end

Bad filename

Direct statement

in file

Bad allocation table

Bad drive number

Bad track/sector

Deleted record

Rename across

disks

Sequential after PUT

Sequential I/O only

File not OPEN

File write protected

Disk offline

C-5

Meaning

All disk storage space is in
use.

An INPUT statement has
been executed after all the
data in the file has been
entered.

An illegal form has been
used for the file name.

A direct statement has been

encountered while loading
an ASCII-format file.

Allocation table has been
damaged.

A drive was specified that is
not in the system.

A track/sector number is
out of range.

Attempt was made to read a
deleted record.

A NAME command speci-
fied two different drives.

A sequential write was at-
tempted after a PUT to a
random file.

A sequential file was
opened as a random file.

An attempt was made to ac-
cess a file that had not pre-
viously been opened.

An attempt to write to a
protected file was made.

APPENDIX D

CHARACTER CODE CHART

E o ~Ј

>
ща

Ф
„2

HT | Ем |)
ðo 25| ^ 57]

LF | 5в | * Ура | z Li-ion я 1 xl
10 25 42| 58 ^| 90 106 122 138 E 170 186; 22 2181 _ 234 250

нм | ес| + | ; K] [fk | J - | г Al? Ф
uj 27 43 Е 5L a 107 123 139) 155 171 + 187 203 219 235 251

С», < | | N | | r + о | 2 о | @

а 28 a4 sol x. 2L 408] m D 166 172 waj __ гај __ 20] 28 2

св | + | - | = | М|] |т | ста | е | о
13 29 45 s т. 93 109

чм оо ® > | ој ој юм = № ©

w

aT

m

„2

р-1

Control

Characters | Explanation

Start of Header
Start of Text
End of Text
End of Transmission
Enquiry
ACK (Positive Acknowledgment)
Bell
Back Space
Horizontal Tab
Line Feed

Home (display) on vertical tab (printer)
Clear screen (display) or form feed (printer)
Carriage Return

Shift Out
Shift In
Data Link Escape
Device 1... Device 4

NAK (Negative Acknowledgment)
Sync
End of Transmission Block
Cancel

End of Medium

Substitute Characters
Escape

APPENDIX Е

DERIVED FUNCTIONS

Functions that are not intrinsic to N-Basic can be calculated

as follows.

Function N-Basic Equivalent

SECANT
COSECANT
COTANGENT
INVERSE SINE

SEC(X)= 1/COS(X)
CSC(X)= 15ІМ(Х)
СОТОО= ИТАМСХ)
ARCSIN(X)= ATN

(X/SQR(— X*X+1))
ARCCOS(X)- —ATN
(X/SQR(— X* X 1))
1.5708:

ARCSEC(X)= ATN
(SQR(X*X-1)) +
(SGN(X)- 1) *1.5708

ARCCSC(X)= АТМ
(1/SQR(X* X—1))+
(SGN(X)—1) *1.5708

ARCCOT(X)= —ATN(X)
+1.5708

SINH(X)= (EXP(X)—
EXP(— Х))/2

COSH(X)- (EXP(X) *
EXP(- X))/2

TANH(X)= —EXP(—X)/
(EXP(X)+ EXP(— X))
"aT

SECH(X)- 2(EXP(X)+
EXP (- X)

CSCH(X)= 2/(EXP(X)—
EXP(— X))

СОТН(Х)= EXP(- X)/
(EXP(X)- EXP(- X))
*2+1

ARCSINH(X)= LOG
(X+ SQR(X* X+ 1))

INVERSE COSINE

INVERSE SECANT

INVERSE COSECANT

INVERSE COTANGENT

HYPERBOLIC SINE

HYPERBOLIC COSINE

HYPERBOLIC TANGENT

HYPERBOLIC SECANT

HYPERBOLIC COSECANT

HYPERBOLIC COTANGENT

INVERSE HYPERBOLIC SINE

Е-1

Function

INVERSE HYPERBOLIC
COSINE

INVERSE HYPERBOLIC
TANGENT

INVERSE HYPERBOLIC
SECANT

INVERSE HYPERBOLIC
COSECANT

INVERSE HYPERBOLIC
COTANGENT

N-Basic Equivalent

ARCCOSH(X)= LOG
(X+SQR(X* X — D)

ARCTANH(X)-LOG
((1+ X)/(0 X))/2

ARCSECH(X)-LOG
(SQR(- X*X
+1)+1)/X)

ARCCHSCH(X)= LOG
((SGN(X)*SQR(X* X
+1)+1)/X)

ARCCOTH(X)= LOG
((X+1)/(X-1))/2

APPENDIX Е

STANDARD РС-8001 KEYBOARD

APPENDIX G

GRAPHIC SYMBOL LOCATIONS

OTTA

LUL

Nuf.l3H |

4
0
1
8

APPENDIX H

ALTERNATE CHARACTER SET

r^

CHAR ПА ВЕТ

